Wenjie Zhou, Sujeeka Nadarajah, Liuchi Li, Anna Guell Izard, Hujie Yan, Aashutosh K. Prachet, Payal Patel, Xiaoxing Xia, Chiara Daraio
{"title":"3D polycatenated architected materials","authors":"Wenjie Zhou, Sujeeka Nadarajah, Liuchi Li, Anna Guell Izard, Hujie Yan, Aashutosh K. Prachet, Payal Patel, Xiaoxing Xia, Chiara Daraio","doi":"10.1126/science.adr9713","DOIUrl":null,"url":null,"abstract":"Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs). We propose a general design framework that translates arbitrary crystalline networks into particle concatenations and geometries. In response to small external loads, PAMs behave like non-Newtonian fluids, showing both shear-thinning and shear-thickening responses, which can be controlled by their catenation topologies. At larger strains, PAMs behave like lattices and foams, with a nonlinear stress-strain relation. At microscale, we demonstrate that PAMs can change their shapes in response to applied electrostatic charges. The distinctive properties of PAMs pave the path for developing stimuli-responsive materials, energy-absorbing systems, and morphing architectures.","PeriodicalId":21678,"journal":{"name":"Science","volume":"37 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adr9713","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs). We propose a general design framework that translates arbitrary crystalline networks into particle concatenations and geometries. In response to small external loads, PAMs behave like non-Newtonian fluids, showing both shear-thinning and shear-thickening responses, which can be controlled by their catenation topologies. At larger strains, PAMs behave like lattices and foams, with a nonlinear stress-strain relation. At microscale, we demonstrate that PAMs can change their shapes in response to applied electrostatic charges. The distinctive properties of PAMs pave the path for developing stimuli-responsive materials, energy-absorbing systems, and morphing architectures.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.