Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Saaylee Danait-Nabar, Krushna Gharat, Rekha S. Singhal
{"title":"Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries","authors":"Saaylee Danait-Nabar, Krushna Gharat, Rekha S. Singhal","doi":"10.1016/j.foodchem.2025.142894","DOIUrl":null,"url":null,"abstract":"L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent K<sub>m</sub> (reduced substrate affinity) and apparent V<sub>max</sub> values and displayed excellent reusability after 10 cycles of use (&gt; 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142894","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent Km (reduced substrate affinity) and apparent Vmax values and displayed excellent reusability after 10 cycles of use (> 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信