Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries
Saaylee Danait-Nabar, Krushna Gharat, Rekha S. Singhal
{"title":"Sodium tripolyphosphate is a non-toxic and economic alternative to glutaraldehyde for preparation of L-asparaginase CLEAs to reduce acrylamide in potato fries","authors":"Saaylee Danait-Nabar, Krushna Gharat, Rekha S. Singhal","doi":"10.1016/j.foodchem.2025.142894","DOIUrl":null,"url":null,"abstract":"L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent K<sub>m</sub> (reduced substrate affinity) and apparent V<sub>max</sub> values and displayed excellent reusability after 10 cycles of use (> 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142894","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved. TA-CLEAs demonstrated superior pH stability (pH 3-8) compared to GA (glutaraldehyde)-CLEA but lost structural integrity at pH 9. TA-CLEAs were thermally more stable (concerning activity) and structurally less stable than GA-CLEA owing to the presence of weaker ionic bonds. TA-CLEAs reported an increase in apparent Km (reduced substrate affinity) and apparent Vmax values and displayed excellent reusability after 10 cycles of use (> 75%). The increase in β-sheet and random coil structures indicated a trade-off between structure stability and flexibility of the protein. TA-CLEAs reduced the acrylamide content in potato fries by 79% after 40 min of treatment time. Thus, the use of TPP as a non-toxic, economical, and biocompatible alternative to the conventionally used toxic crosslinker glutaraldehyde was demonstrated.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.