Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Food Chemistry: X Pub Date : 2024-12-24 eCollection Date: 2025-01-01 DOI:10.1016/j.fochx.2024.102110
Jingyi Hu, Longfei Wang, Menglan Xiao, Weihua Chen, Meng Zhou, Yihan Hu, Yujie Zhang, Miao Lai, Aimin He, Mingqin Zhao
{"title":"Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.","authors":"Jingyi Hu, Longfei Wang, Menglan Xiao, Weihua Chen, Meng Zhou, Yihan Hu, Yujie Zhang, Miao Lai, Aimin He, Mingqin Zhao","doi":"10.1016/j.fochx.2024.102110","DOIUrl":null,"url":null,"abstract":"<p><p>The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.98 mg/g) was obtained through response surface optimization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Flourier transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were utilized to verify the successful adsorption. Thermo-gravimetry (TG) analysis showed that the release of citral was delayed. Temperature responsiveness indicated the release of citral was controlled by internal diffusion. Density functional theory (DFT) calculations indicated the interactions between BC and citral was mainly composed of van der Waals forces and hydrogen bonds. BC-Citral also exhibited excellent antibacterial capability. This work provided a new approach for constructing controlled-release materials of citral, which offered good application prospects in food industry.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102110"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102110","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.98 mg/g) was obtained through response surface optimization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Flourier transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were utilized to verify the successful adsorption. Thermo-gravimetry (TG) analysis showed that the release of citral was delayed. Temperature responsiveness indicated the release of citral was controlled by internal diffusion. Density functional theory (DFT) calculations indicated the interactions between BC and citral was mainly composed of van der Waals forces and hydrogen bonds. BC-Citral also exhibited excellent antibacterial capability. This work provided a new approach for constructing controlled-release materials of citral, which offered good application prospects in food industry.

细菌纤维素对香精的吸附和缓释机理的研究。
柠檬醛的稳定性和缓释特性对食品具有重要意义。本文创新性地报道了细菌纤维素(BC)通过气相吸附技术对柠檬醛的吸附和缓释,并揭示了其吸附机理。以烟草茎叶废提取物(TSWE)为原料制备了BC,通过响应面优化获得了较好的吸附量(124.98 mg/g)。利用扫描电镜(SEM)、x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和布鲁诺尔-埃米特-泰勒(BET)对吸附成功进行了验证。热重分析表明,柠檬醛的释放延迟。温度响应性表明,柠檬醛的释放受内扩散控制。密度泛函理论(DFT)计算表明,BC与柠檬醛的相互作用主要由范德华力和氢键组成。bc -柠檬醛也表现出优异的抗菌性能。本研究为构建柠檬醛控释材料提供了新的途径,在食品工业中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信