{"title":"A Comparative Review on the Production of Factor VIII in Human and Non-human Hosts.","authors":"Amirhossein Ghaemi, Hamid Moghimi, Mohammad-Hossein Sarrafzadeh","doi":"10.2174/0113816128327353241121050134","DOIUrl":null,"url":null,"abstract":"<p><p>Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process. Multiple host cells, such as animal, microbial, and human cell lines, are examined. Cultivating genetically modified cells enables the production of rFVIII, with further changes after protein synthesis, such as glycosylation, taking place in eukaryotic cells to guarantee correct folding. The extraction and purification of rFVIII require advanced methods, including affinity chromatography, to improve the purity of the protein. The purified protein undergoes rigorous quality control, which includes Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDSPAGE) analysis, to assess its identity, purity, and functioning. The scalability of this approach allows for the synthesis of significant amounts of rFVIII for therapeutic purposes. Optimization strategies include modifying B-domain-deleted (BDD) FVIII, including introns in FVIII complementary DNA (cDNA) sequences to boost synthesis and storage, and making changes to chaperone-binding areas to optimize protein release. Furthermore, the search for a modified form of FVIII that has a longer duration of action in the body shows potential for enhancing the effectiveness of synthetic FVIII and progressing the treatment of hemophilia A. Future research should focus on improving the treatment of hemophilia A by developing a variant of FVIII that has increased stability and reduced immunogenicity.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128327353241121050134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process. Multiple host cells, such as animal, microbial, and human cell lines, are examined. Cultivating genetically modified cells enables the production of rFVIII, with further changes after protein synthesis, such as glycosylation, taking place in eukaryotic cells to guarantee correct folding. The extraction and purification of rFVIII require advanced methods, including affinity chromatography, to improve the purity of the protein. The purified protein undergoes rigorous quality control, which includes Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDSPAGE) analysis, to assess its identity, purity, and functioning. The scalability of this approach allows for the synthesis of significant amounts of rFVIII for therapeutic purposes. Optimization strategies include modifying B-domain-deleted (BDD) FVIII, including introns in FVIII complementary DNA (cDNA) sequences to boost synthesis and storage, and making changes to chaperone-binding areas to optimize protein release. Furthermore, the search for a modified form of FVIII that has a longer duration of action in the body shows potential for enhancing the effectiveness of synthetic FVIII and progressing the treatment of hemophilia A. Future research should focus on improving the treatment of hemophilia A by developing a variant of FVIII that has increased stability and reduced immunogenicity.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.