An Unexpected Activity of a Minor Cannabinoid: Cannabicyclol (CBL) Is a Potent Positive Allosteric Modulator of Serotonin 5-HT1A Receptor.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Journal of Natural Products Pub Date : 2025-01-24 Epub Date: 2025-01-15 DOI:10.1021/acs.jnatprod.4c00977
Mehdi Haghdoost, Yvonne DePorre, Max Figi, Scott Young, Caitlyn Krebs, Marcel O Bonn-Miller
{"title":"An Unexpected Activity of a Minor Cannabinoid: Cannabicyclol (CBL) Is a Potent Positive Allosteric Modulator of Serotonin 5-HT<sub>1A</sub> Receptor.","authors":"Mehdi Haghdoost, Yvonne DePorre, Max Figi, Scott Young, Caitlyn Krebs, Marcel O Bonn-Miller","doi":"10.1021/acs.jnatprod.4c00977","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts. Key reaction conditions, such as solvent, temperature, and time, significantly impacted the yield. The structure of (±)-CBL was confirmed via X-ray crystallography. Stability studies showed that (±)-CBL and its MCT oil dilution remain stable at 25-40 °C for three months. Radioligand binding assays revealed high affinity of CBL for the 5-HT<sub>1A</sub> receptor but weak interaction with CB<sub>1</sub> and CB<sub>2</sub> receptors. At 10 μM and 1 μM, (±)-CBL inhibited [<sup>3</sup>H]-8-hydroxy-DPAT binding to 5-HT<sub>1A</sub> by 75% and 20%, respectively. Functional assays showed that (±)-CBL acts as a weak agonist at high concentrations but a potent positive allosteric modulator of serotonin-induced activation at low concentrations. At 4 μM, (±)-CBL increased serotonin-induced β-arrestin recruitment from 20% to 80%. This unique modulatory profile highlights the potential of (±)-CBL in drug discovery targeting serotonin receptors.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":"58-66"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00977","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts. Key reaction conditions, such as solvent, temperature, and time, significantly impacted the yield. The structure of (±)-CBL was confirmed via X-ray crystallography. Stability studies showed that (±)-CBL and its MCT oil dilution remain stable at 25-40 °C for three months. Radioligand binding assays revealed high affinity of CBL for the 5-HT1A receptor but weak interaction with CB1 and CB2 receptors. At 10 μM and 1 μM, (±)-CBL inhibited [3H]-8-hydroxy-DPAT binding to 5-HT1A by 75% and 20%, respectively. Functional assays showed that (±)-CBL acts as a weak agonist at high concentrations but a potent positive allosteric modulator of serotonin-induced activation at low concentrations. At 4 μM, (±)-CBL increased serotonin-induced β-arrestin recruitment from 20% to 80%. This unique modulatory profile highlights the potential of (±)-CBL in drug discovery targeting serotonin receptors.

一种意想不到的小大麻素活性:大麻环醇(CBL)是5-羟色胺5-HT1A受体的一种有效的阳性变构调节剂。
大麻环酚(±)-CBL)是一种次要的植物大麻素,在很大程度上未被开发,其生物活性以前没有记载。研究了不同酸性催化剂对大麻二色胺(CBC)的转化作用。室温下氯仿蒙脱土(K30)收率最高(60%),副产物最少。关键的反应条件,如溶剂、温度和时间,对收率有显著影响。x射线晶体学证实了(±)-CBL的结构。稳定性研究表明(±)-CBL及其MCT油稀释液在25-40°C下保持稳定3个月。放射配体结合试验显示CBL对5-HT1A受体具有高亲和力,但与CB1和CB2受体的相互作用较弱。在10 μM和1 μM时,(±)-CBL分别抑制[3H]-8-羟基- dpat与5-HT1A结合75%和20%。功能分析表明(±)-CBL在高浓度时是弱激动剂,但在低浓度时是血清素诱导激活的强效正变构调节剂。在4 μM时,(±)-CBL使血清素诱导的β-抑制素募集从20%增加到80%。这种独特的调节特征突出了(±)-CBL在靶向5 -羟色胺受体的药物发现中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信