Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin
{"title":"Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis","authors":"Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin","doi":"10.1021/acs.analchem.4c05539","DOIUrl":null,"url":null,"abstract":"Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"43 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.

Abstract Image

用于监测细胞凋亡过程中细胞因子动态表达的智能无创 SERS 免疫传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信