Yuxin Zhao , Guanglong Yao , Kaimian Li , Jianqiu Ye , Jian Chen , Jie Zhang
{"title":"Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films","authors":"Yuxin Zhao , Guanglong Yao , Kaimian Li , Jianqiu Ye , Jian Chen , Jie Zhang","doi":"10.1016/j.fochx.2024.102057","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1–3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction. The results showed that the cross-linked starch, SA, AgNPs, and ZnOs had good biocompatibility and interactions, and the AgNPs and ZnOs had synergistic effects. ESEM also revealed that the polymer and nanofiller had good compatibility. The Young's modulus and tensile strength values of the CLTS/SA/AgNP/ZnO film increased from 351.64 MPa to 1879 MPa and from 13.77 MPa to 53.76 MPa, respectively, with increasing concentration of nano-ZnO particles. The decrease in elongation at break from 48.15 % to 24.60 % indicated a certain increase in rigidity and a decrease in flexibility. The ultraviolet barrier and thermal stability of the CLTS/SA/AgNP/ZnO film effectively improved, and the antibacterial activity increased; the antibacterial effect of the CLTS/SA/AgNP/ZnO film was better than that of <em>Streptococcus aureus</em>. The study revealed that the CLTS/SA/AgNP/ZnO composite film represented a packaging material with superior performance.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"Article 102057"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524009453","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1–3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction. The results showed that the cross-linked starch, SA, AgNPs, and ZnOs had good biocompatibility and interactions, and the AgNPs and ZnOs had synergistic effects. ESEM also revealed that the polymer and nanofiller had good compatibility. The Young's modulus and tensile strength values of the CLTS/SA/AgNP/ZnO film increased from 351.64 MPa to 1879 MPa and from 13.77 MPa to 53.76 MPa, respectively, with increasing concentration of nano-ZnO particles. The decrease in elongation at break from 48.15 % to 24.60 % indicated a certain increase in rigidity and a decrease in flexibility. The ultraviolet barrier and thermal stability of the CLTS/SA/AgNP/ZnO film effectively improved, and the antibacterial activity increased; the antibacterial effect of the CLTS/SA/AgNP/ZnO film was better than that of Streptococcus aureus. The study revealed that the CLTS/SA/AgNP/ZnO composite film represented a packaging material with superior performance.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.