Comprehensive Analysis of Fecal Microbiome and Metabolomics Uncovered dl-Norvaline-Ameliorated Obesity-Associated Disorders in High-Fat Diet-Fed Obese Mice by Targeting the Gut Microbiota
{"title":"Comprehensive Analysis of Fecal Microbiome and Metabolomics Uncovered dl-Norvaline-Ameliorated Obesity-Associated Disorders in High-Fat Diet-Fed Obese Mice by Targeting the Gut Microbiota","authors":"Xin Li, Yanting Qin, Fangfang Yue, Xin Lü","doi":"10.1021/acs.jafc.4c06638","DOIUrl":null,"url":null,"abstract":"Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, <span>dl</span>-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that <span>dl</span>-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (<i>Mollicutes_RF39</i>, <i>Ruminococcaceae</i>, <i>Bacteroidaceae</i>, <i>Rikenellaceae</i>, <i>Lactobacillaceae</i>, <i>Clostridiaceae_1</i>, <i>uncultured_bacterium_f_Muribaculaceae</i>, and <i>Rikenellaceae_RC9_gut_group</i>) and decreasing harmful bacteria (<i>Fusobacteriia</i>, <i>Desulfovibrionales</i>, <i>Enterobacteriaceae</i>, <i>Burkholderiaceae</i>, <i>Helicobacteraceae</i>, and <i>Veillonellaceae</i>) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated. In addition, the pseudogerm-free mouse model verified that <span>dl</span>-norvaline ameliorated obesity-associated disorders in HFD-fed obese mice by targeting gut microbiota. These results clarified that <span>dl</span>-norvaline may be promising for developing and innovating potential functional food products.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"52 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06638","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (Mollicutes_RF39, Ruminococcaceae, Bacteroidaceae, Rikenellaceae, Lactobacillaceae, Clostridiaceae_1, uncultured_bacterium_f_Muribaculaceae, and Rikenellaceae_RC9_gut_group) and decreasing harmful bacteria (Fusobacteriia, Desulfovibrionales, Enterobacteriaceae, Burkholderiaceae, Helicobacteraceae, and Veillonellaceae) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated. In addition, the pseudogerm-free mouse model verified that dl-norvaline ameliorated obesity-associated disorders in HFD-fed obese mice by targeting gut microbiota. These results clarified that dl-norvaline may be promising for developing and innovating potential functional food products.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.