Shuzhen Yue, Xuan Xu, Li-Ping Jiang, Huiqin Yao, Jun-Jie Zhu
{"title":"All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA","authors":"Shuzhen Yue, Xuan Xu, Li-Ping Jiang, Huiqin Yao, Jun-Jie Zhu","doi":"10.1021/acs.analchem.4c05256","DOIUrl":null,"url":null,"abstract":"An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands. Moreover, the AIO-EDN leverages an endogenous APE1 overexpressed in cancer cells to activate the EDC reaction, which, however, exerts no target sensing activity in normal cells. Combining fluorescence- and surface-enhanced Raman scattering (FL/SERS) dual-mode imaging techniques, this DNA nanomachine exhibits significantly improved accuracy and tumor cell selectivity for microRNA imaging in living cells. This study provides a new paradigm to develop an integrated EDC-based platform and shows great potential in in-depth cancer diagnosis with high precision.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"16 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05256","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands. Moreover, the AIO-EDN leverages an endogenous APE1 overexpressed in cancer cells to activate the EDC reaction, which, however, exerts no target sensing activity in normal cells. Combining fluorescence- and surface-enhanced Raman scattering (FL/SERS) dual-mode imaging techniques, this DNA nanomachine exhibits significantly improved accuracy and tumor cell selectivity for microRNA imaging in living cells. This study provides a new paradigm to develop an integrated EDC-based platform and shows great potential in in-depth cancer diagnosis with high precision.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.