All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Shuzhen Yue, Xuan Xu, Li-Ping Jiang, Huiqin Yao, Jun-Jie Zhu
{"title":"All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA","authors":"Shuzhen Yue, Xuan Xu, Li-Ping Jiang, Huiqin Yao, Jun-Jie Zhu","doi":"10.1021/acs.analchem.4c05256","DOIUrl":null,"url":null,"abstract":"An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands. Moreover, the AIO-EDN leverages an endogenous APE1 overexpressed in cancer cells to activate the EDC reaction, which, however, exerts no target sensing activity in normal cells. Combining fluorescence- and surface-enhanced Raman scattering (FL/SERS) dual-mode imaging techniques, this DNA nanomachine exhibits significantly improved accuracy and tumor cell selectivity for microRNA imaging in living cells. This study provides a new paradigm to develop an integrated EDC-based platform and shows great potential in in-depth cancer diagnosis with high precision.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"16 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05256","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands. Moreover, the AIO-EDN leverages an endogenous APE1 overexpressed in cancer cells to activate the EDC reaction, which, however, exerts no target sensing activity in normal cells. Combining fluorescence- and surface-enhanced Raman scattering (FL/SERS) dual-mode imaging techniques, this DNA nanomachine exhibits significantly improved accuracy and tumor cell selectivity for microRNA imaging in living cells. This study provides a new paradigm to develop an integrated EDC-based platform and shows great potential in in-depth cancer diagnosis with high precision.

Abstract Image

用于肿瘤细胞选择性 MicroRNA 荧光/SERS 双模式成像的一体化熵驱动 DNA 纳米机器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信