Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Wei Quan, Qian Zhang, Huawei Huang, Weiying Lin
{"title":"Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging","authors":"Wei Quan, Qian Zhang, Huawei Huang, Weiying Lin","doi":"10.1021/acs.analchem.4c04615","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, <b>MI-PPF</b>, with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized. Notably, <b>MI-PPF</b> has successfully realized the <i>in situ</i> detection of mitochondrial morphology and polarity alterations during the photodynamic therapy process in cancer cells through fluorescence lifetime imaging. The results showed that a series of phenomena such as deformation, shrinkage, vacuolation, and aggregation occurred in the mitochondrial morphology during photodynamic therapy. Concurrently, a decline in mitochondrial polarity is also noted, which may be closely linked to the mitochondrial oxidative stress response during this process. Furthermore, <b>MI-PPF</b> can be used for photodynamic therapy on tumor mouse models and has successfully achieved fluorescence lifetime imaging of tumor sections before and after photodynamic therapy, uncovering multifaceted changes in cell morphology, polarity, and polarity distribution within the mouse tumor model during the process. It is anticipated that this study will offer valuable insights and guidance to the research of mitochondrial-related fields and will boost the advancement of diagnostic and therapeutic areas for associated diseases.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"52 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, MI-PPF, with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized. Notably, MI-PPF has successfully realized the in situ detection of mitochondrial morphology and polarity alterations during the photodynamic therapy process in cancer cells through fluorescence lifetime imaging. The results showed that a series of phenomena such as deformation, shrinkage, vacuolation, and aggregation occurred in the mitochondrial morphology during photodynamic therapy. Concurrently, a decline in mitochondrial polarity is also noted, which may be closely linked to the mitochondrial oxidative stress response during this process. Furthermore, MI-PPF can be used for photodynamic therapy on tumor mouse models and has successfully achieved fluorescence lifetime imaging of tumor sections before and after photodynamic therapy, uncovering multifaceted changes in cell morphology, polarity, and polarity distribution within the mouse tumor model during the process. It is anticipated that this study will offer valuable insights and guidance to the research of mitochondrial-related fields and will boost the advancement of diagnostic and therapeutic areas for associated diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信