Denoising of ceramic detection signals based on the combination of variational modal decomposition optimized by improved secretary bird optimization algorithm and wavelet thresholding.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Jianping Luan, Liping Liu, Bo Cui
{"title":"Denoising of ceramic detection signals based on the combination of variational modal decomposition optimized by improved secretary bird optimization algorithm and wavelet thresholding.","authors":"Jianping Luan, Liping Liu, Bo Cui","doi":"10.1063/5.0239846","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the problem of noise interference in the knock detection signal received by the pickup in the ceramic sheet knock non-destructive testing, a noise removal method is proposed based on the improved secretary bird optimization algorithm (ISBOA) optimized variational mode decomposition (VMD) combined with wavelet thresholding. First, the secretary bird optimization algorithm is improved by using the Newton-Raphson search rule and smooth exploitation variation strategy. Second, the ISBOA is used to select the key parameters in the VMD. Third, the signal is subjected to the VMD decomposition to obtain the intrinsic mode functions (IMFs), and permutation entropy of each IMF component is calculated to divide it into effective signal component or noise component. Finally, the effective signal component is denoised by using improved wavelet thresholding, and the processed IMFs components are reconstructed to obtain the denoised signal. The denoising of simulated signal with 5 dB signal-to-noise ratio shows that the signal-to-noise ratio of the signal is improved by 11.59 dB and the root mean square error is reduced by 73.6%, which is the most significant denoising effect of the method compared to other similar algorithms. In addition, tests on the knock detection signals of ceramic pieces with different types of defects also show that the method has wide applicability and an excellent denoising effect.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0239846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the problem of noise interference in the knock detection signal received by the pickup in the ceramic sheet knock non-destructive testing, a noise removal method is proposed based on the improved secretary bird optimization algorithm (ISBOA) optimized variational mode decomposition (VMD) combined with wavelet thresholding. First, the secretary bird optimization algorithm is improved by using the Newton-Raphson search rule and smooth exploitation variation strategy. Second, the ISBOA is used to select the key parameters in the VMD. Third, the signal is subjected to the VMD decomposition to obtain the intrinsic mode functions (IMFs), and permutation entropy of each IMF component is calculated to divide it into effective signal component or noise component. Finally, the effective signal component is denoised by using improved wavelet thresholding, and the processed IMFs components are reconstructed to obtain the denoised signal. The denoising of simulated signal with 5 dB signal-to-noise ratio shows that the signal-to-noise ratio of the signal is improved by 11.59 dB and the root mean square error is reduced by 73.6%, which is the most significant denoising effect of the method compared to other similar algorithms. In addition, tests on the knock detection signals of ceramic pieces with different types of defects also show that the method has wide applicability and an excellent denoising effect.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信