Foliar Spraying of Nanoselenium Improves the Nutritional Quality of Alfalfa by Recruiting Beneficial Phyllosphere Bacteria and Regulating the Distribution and Translocation of Selenium
{"title":"Foliar Spraying of Nanoselenium Improves the Nutritional Quality of Alfalfa by Recruiting Beneficial Phyllosphere Bacteria and Regulating the Distribution and Translocation of Selenium","authors":"Pengbo Sun, Zhijun Wang, Gentu Ge, Lin Sun, Jian Bao, Yichao Liu, Xingquan Yan, Jiawei Zhang, Yuhan Zhang, Yushan Jia","doi":"10.1021/acs.jafc.4c08958","DOIUrl":null,"url":null,"abstract":"Nanoselenium shows potential trends in improving plant health and food quality. In this study, different concentrations of nanoselenium were sprayed on the leaves of alfalfa. Compared to the control, nanoselenium (100 mg·L<sup>–1</sup>) significantly increased SeMet and SeMeCys contents in the roots, stems, and leaves of alfalfa. Nanoselenium educed malondialdehyde by modulating the glutamine synthetase-glutamate synthetase (GS-GOGAT) cycle and activating antioxidant enzymes, including the ascorbate-glutathione (AsA-GSH) cycle, as well as enhancing photosynthesis, resulting in an increase in the alfalfa yield, crude protein, and relative feeding value. The biofortification of nanoselenium mainly changed the community structure of phyllosphere bacteria by regulating metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and membrane transport, among which Proteobacteria were more responsive to nanoselenium. In conclusion, nanoselenium will enhance photosynthesis, improve signaling molecules, and recruit beneficial bacteria to regulate the nutritional levels of alfalfa.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"38 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08958","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoselenium shows potential trends in improving plant health and food quality. In this study, different concentrations of nanoselenium were sprayed on the leaves of alfalfa. Compared to the control, nanoselenium (100 mg·L–1) significantly increased SeMet and SeMeCys contents in the roots, stems, and leaves of alfalfa. Nanoselenium educed malondialdehyde by modulating the glutamine synthetase-glutamate synthetase (GS-GOGAT) cycle and activating antioxidant enzymes, including the ascorbate-glutathione (AsA-GSH) cycle, as well as enhancing photosynthesis, resulting in an increase in the alfalfa yield, crude protein, and relative feeding value. The biofortification of nanoselenium mainly changed the community structure of phyllosphere bacteria by regulating metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and membrane transport, among which Proteobacteria were more responsive to nanoselenium. In conclusion, nanoselenium will enhance photosynthesis, improve signaling molecules, and recruit beneficial bacteria to regulate the nutritional levels of alfalfa.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.