Extreme Enhancement‐Mode Operation Accumulation Channel Hydrogen‐Terminated Diamond FETs with Vth < −6 V and High on‐Current

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chunlin Qu, Isha Maini, Qing Guo, Alastair Stacey, David A. J. Moran
{"title":"Extreme Enhancement‐Mode Operation Accumulation Channel Hydrogen‐Terminated Diamond FETs with Vth < −6 V and High on‐Current","authors":"Chunlin Qu, Isha Maini, Qing Guo, Alastair Stacey, David A. J. Moran","doi":"10.1002/aelm.202400770","DOIUrl":null,"url":null,"abstract":"In this work, a new Field Effect Transistor device concept based on hydrogen‐terminated diamond (H‐diamond) is demonstrated that operates in an Accumulation Channel rather than a Transfer Doping regime. The FET devices demonstrate both extreme enhancement‐mode operation and high on‐current with improved channel charge mobility compared to Transfer‐Doped equivalents. Electron‐beam evaporated Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is used on H‐diamond to suppress the Transfer Doping mechanism and produce an extremely high ungated channel resistance. A high‐quality H‐diamond surface with an unpinned Fermi level is crucially achieved, allowing for the formation of a high‐density hole accumulation layer by gating the entire device channel which is encapsulated in dual‐stacks of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. Completed devices with gate/channel length of 1 µm demonstrate record threshold voltage &lt; −6 V with on‐current &gt; 80 mA mm<jats:sup>−1</jats:sup>. Carrier density and mobility figures extracted by CV analysis indicate a high 2D charge density of ≈ 2 × 10<jats:sup>12</jats:sup> cm<jats:sup>−2</jats:sup> and increased hole mobility of 110 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> in comparison with more traditional Transfer‐Doped H‐diamond FETs. These results demonstrate the most negative threshold voltage yet reported for H‐diamond FETs and highlight a powerful new strategy to greatly improve carrier mobility and enable enhanced high power and high frequency diamond transistor performance.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"35 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400770","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a new Field Effect Transistor device concept based on hydrogen‐terminated diamond (H‐diamond) is demonstrated that operates in an Accumulation Channel rather than a Transfer Doping regime. The FET devices demonstrate both extreme enhancement‐mode operation and high on‐current with improved channel charge mobility compared to Transfer‐Doped equivalents. Electron‐beam evaporated Al2O3 is used on H‐diamond to suppress the Transfer Doping mechanism and produce an extremely high ungated channel resistance. A high‐quality H‐diamond surface with an unpinned Fermi level is crucially achieved, allowing for the formation of a high‐density hole accumulation layer by gating the entire device channel which is encapsulated in dual‐stacks of Al2O3. Completed devices with gate/channel length of 1 µm demonstrate record threshold voltage < −6 V with on‐current > 80 mA mm−1. Carrier density and mobility figures extracted by CV analysis indicate a high 2D charge density of ≈ 2 × 1012 cm−2 and increased hole mobility of 110 cm2 V−1 s−1 in comparison with more traditional Transfer‐Doped H‐diamond FETs. These results demonstrate the most negative threshold voltage yet reported for H‐diamond FETs and highlight a powerful new strategy to greatly improve carrier mobility and enable enhanced high power and high frequency diamond transistor performance.
Vth < - 6 V和高导通电流的极增强模式操作积累通道氢端金刚石场效应管
在这项工作中,基于氢端金刚石(H - diamond)的一种新的场效应晶体管器件概念被证明在积累通道而不是转移掺杂机制下工作。与转移掺杂等效器件相比,FET器件表现出极端的增强模式操作和高导通电流,并改善了通道电荷迁移率。利用电子束蒸发Al2O3在H -金刚石上抑制了转移掺杂机制,产生了极高的非门控通道电阻。具有非固定费米能级的高质量H -金刚石表面是至关重要的,通过门控封装在双Al2O3层中的整个器件通道,可以形成高密度的孔积累层。栅极/通道长度为1 μ m的完整器件显示记录阈值电压<;−6 V带导通电流>;80ma mm−1。通过CV分析提取的载流子密度和迁移率数据表明,与传统的转移掺杂H -金刚石场效应管相比,载流子密度高达约2 × 1012 cm−2,空穴迁移率高达110 cm2 V−1 s−1。这些结果展示了迄今为止最负的H -金刚石fet阈值电压,并强调了一种强大的新策略,可以大大提高载流子迁移率,增强高功率和高频金刚石晶体管的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信