Isolation and Characterization of Lytic Phages Infecting Clinical Klebsiella pneumoniae from Tunisia.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Donia Mourali, Rahma Kazdaghli, Marwa Gara-Ali, Houda Ben-Miled, Lucas Mora-Quilis, Pilar Domingo-Calap, Kamel Ben-Mahrez
{"title":"Isolation and Characterization of Lytic Phages Infecting Clinical <i>Klebsiella pneumoniae</i> from Tunisia.","authors":"Donia Mourali, Rahma Kazdaghli, Marwa Gara-Ali, Houda Ben-Miled, Lucas Mora-Quilis, Pilar Domingo-Calap, Kamel Ben-Mahrez","doi":"10.3390/antibiotics13121154","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: <i>Klebsiella pneumoniae</i> is an opportunistic pathogen that causes a wide range of infections worldwide. The emergence and spread of multidrug-resistant clones requires the implementation of novel therapeutics, and phages are a promising approach. <b>Results</b>: In this study, two <i>Klebsiella</i> phages, KpTDp1 and KpTDp2, were isolated from wastewater samples in Tunisia. These phages had a narrow host range and specifically targeted the hypervirulent K2 and K28 capsular types of <i>K. pneumoniae</i>. Both phages have double-stranded linear DNA genomes of 49,311 and 49,084 bp, respectively. Comparative genomic and phylogenetic analyses placed phage KpTDp2 in the genus <i>Webervirus</i>, while phage KpTDp1 showed some homology with members of the genus <i>Jedunavirus</i>, although its placement in a new undescribed genus may be reconsidered. The replication efficiency and lytic ability of these phages, combined with their high stability at temperatures up to 70 °C and pH values ranging from 3.5 to 8.2, highlight the potential of these phages as good candidates for the control of hypervirulent multidrug-resistant <i>K. pneumoniae</i>. <b>Methods</b>: Phage isolation, titration and multiplicity of infection were performed. The stability of KpTDp1 and KpTDp2 was tested at different pH and temperatures. Genomic characterization was done by genome sequencing, annotation and phylogenetic analysis. <b>Conclusions</b>: The ability of KpTDp1 and KpTDp2 to lyse one of the most virulent serotypes of <i>K. pneumoniae</i>, as well as the stability of their lytic activities to pH and temperature variations, make these phages promising candidates for antibacterial control.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121154","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Klebsiella pneumoniae is an opportunistic pathogen that causes a wide range of infections worldwide. The emergence and spread of multidrug-resistant clones requires the implementation of novel therapeutics, and phages are a promising approach. Results: In this study, two Klebsiella phages, KpTDp1 and KpTDp2, were isolated from wastewater samples in Tunisia. These phages had a narrow host range and specifically targeted the hypervirulent K2 and K28 capsular types of K. pneumoniae. Both phages have double-stranded linear DNA genomes of 49,311 and 49,084 bp, respectively. Comparative genomic and phylogenetic analyses placed phage KpTDp2 in the genus Webervirus, while phage KpTDp1 showed some homology with members of the genus Jedunavirus, although its placement in a new undescribed genus may be reconsidered. The replication efficiency and lytic ability of these phages, combined with their high stability at temperatures up to 70 °C and pH values ranging from 3.5 to 8.2, highlight the potential of these phages as good candidates for the control of hypervirulent multidrug-resistant K. pneumoniae. Methods: Phage isolation, titration and multiplicity of infection were performed. The stability of KpTDp1 and KpTDp2 was tested at different pH and temperatures. Genomic characterization was done by genome sequencing, annotation and phylogenetic analysis. Conclusions: The ability of KpTDp1 and KpTDp2 to lyse one of the most virulent serotypes of K. pneumoniae, as well as the stability of their lytic activities to pH and temperature variations, make these phages promising candidates for antibacterial control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信