Integrating Diagnostic Approaches in Infant Bacterial Meningitis Caused by a Non-K1 Escherichia coli: A Case Report.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Gianluca Vrenna, Marilena Agosta, Valeria Fox, Martina Rossitto, Venere Cortazzo, Serena Raimondi, Barbara Lucignano, Manuela Onori, Livia Mancinelli, Maria Del Carmen Pereyra Boza, Vanessa Fini, Annarita Granaglia, Laura Lancella, Francesca Ippolita Calo' Carducci, Costanza Tripiciano, Alberto Villani, Paola Bernaschi, Carlo Federico Perno
{"title":"Integrating Diagnostic Approaches in Infant Bacterial Meningitis Caused by a Non-K1 <i>Escherichia coli</i>: A Case Report.","authors":"Gianluca Vrenna, Marilena Agosta, Valeria Fox, Martina Rossitto, Venere Cortazzo, Serena Raimondi, Barbara Lucignano, Manuela Onori, Livia Mancinelli, Maria Del Carmen Pereyra Boza, Vanessa Fini, Annarita Granaglia, Laura Lancella, Francesca Ippolita Calo' Carducci, Costanza Tripiciano, Alberto Villani, Paola Bernaschi, Carlo Federico Perno","doi":"10.3390/antibiotics13121144","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infant meningitis, particularly caused by <i>Escherichia coli</i>, remains a life-threatening condition, especially in premature and low-weight infants. Infections of the central nervous system can be fatal, necessitating prompt diagnosis and appropriate treatment. Acute infections caused by various pathogens, including <i>E. coli</i>, often present with similar clinical symptoms. The rapid identification of pathogens and their antimicrobial resistance mechanisms is critical for timely and effective treatment. We report the case of an 8-month-old patient who presented with fever, diarrhea, and convulsive seizures and was subsequently diagnosed with meningitis. Despite initial empirical treatment with ceftriaxone, the patient's condition worsened.</p><p><strong>Methods: </strong>At Bambino Gesù Children's Hospital, molecular diagnostic tools, including the FilmArray Meningitis/Encephalitis and Blood Culture Identification panels, were employed.</p><p><strong>Results: </strong>Although the Meningitis panel did not detect any pathogens due to the lack of the specific bacterial target, the off-label use of the Blood Culture Identification panel identified a non-K1 <i>Escherichia coli</i> strain carrying the CTX-M resistance gene, an extended-spectrum beta-lactamase (ESBL). Despite the rapid diagnostic approach and adjustment of antibiotic therapy, the patient succumbed to the infection due to the strain's high virulence and multidrug resistance. Whole-genome sequencing further characterized the strain, revealing that it belonged to the ST131 group, a highly resistant and virulent strain associated with sepsis.</p><p><strong>Conclusions: </strong>This case highlights the importance of integrating advanced molecular diagnostics, such as whole-genome sequencing, with traditional methods to improve pathogen detection, especially in cases of emerging resistant strains that are not covered by standard diagnostic panels. It also emphasizes the need for the continuous adaptation of diagnostic tools to include non-K1 <i>E. coli</i> strains for more comprehensive and timely meningitis diagnosis.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Infant meningitis, particularly caused by Escherichia coli, remains a life-threatening condition, especially in premature and low-weight infants. Infections of the central nervous system can be fatal, necessitating prompt diagnosis and appropriate treatment. Acute infections caused by various pathogens, including E. coli, often present with similar clinical symptoms. The rapid identification of pathogens and their antimicrobial resistance mechanisms is critical for timely and effective treatment. We report the case of an 8-month-old patient who presented with fever, diarrhea, and convulsive seizures and was subsequently diagnosed with meningitis. Despite initial empirical treatment with ceftriaxone, the patient's condition worsened.

Methods: At Bambino Gesù Children's Hospital, molecular diagnostic tools, including the FilmArray Meningitis/Encephalitis and Blood Culture Identification panels, were employed.

Results: Although the Meningitis panel did not detect any pathogens due to the lack of the specific bacterial target, the off-label use of the Blood Culture Identification panel identified a non-K1 Escherichia coli strain carrying the CTX-M resistance gene, an extended-spectrum beta-lactamase (ESBL). Despite the rapid diagnostic approach and adjustment of antibiotic therapy, the patient succumbed to the infection due to the strain's high virulence and multidrug resistance. Whole-genome sequencing further characterized the strain, revealing that it belonged to the ST131 group, a highly resistant and virulent strain associated with sepsis.

Conclusions: This case highlights the importance of integrating advanced molecular diagnostics, such as whole-genome sequencing, with traditional methods to improve pathogen detection, especially in cases of emerging resistant strains that are not covered by standard diagnostic panels. It also emphasizes the need for the continuous adaptation of diagnostic tools to include non-K1 E. coli strains for more comprehensive and timely meningitis diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信