Identifying the Molecular Fingerprint of Beta-Lactams via Raman/SERS Spectroscopy Using Unconventional Nanoparticles for Antimicrobial Stewardship.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Vinicius Pereira Anjos, Caroline Guimarães Pançardes da Silva Marangoni, Rafael Nadas, Thiago Neves Machado, Damaris Krul, Luiza Souza Rodrigues, Libera Maria Dalla-Costa, Wido Herwig Schreiner, Denise Maria Zezell, Arandi Ginane Bezerra, Rafael Eleodoro de Góes
{"title":"Identifying the Molecular Fingerprint of Beta-Lactams via Raman/SERS Spectroscopy Using Unconventional Nanoparticles for Antimicrobial Stewardship.","authors":"Vinicius Pereira Anjos, Caroline Guimarães Pançardes da Silva Marangoni, Rafael Nadas, Thiago Neves Machado, Damaris Krul, Luiza Souza Rodrigues, Libera Maria Dalla-Costa, Wido Herwig Schreiner, Denise Maria Zezell, Arandi Ginane Bezerra, Rafael Eleodoro de Góes","doi":"10.3390/antibiotics13121157","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Beta-lactam antibiotics, derived from penicillin, are the most used class of antimicrobials used for treating bacterial infections. Over the years, microorganisms have developed resistance mechanisms capable of preventing the effect of these drugs. This condition has been a significant public health concern for the 21st century, especially after predictions that antimicrobial resistance could lead to 10 million deaths annually by 2050. The challenge of developing new antimicrobials brings with it the need to ensure the efficacy of existing ones, hence the importance of developing fast and low-cost monitoring techniques. <b>Methods:</b> In this study, we present an alternative based on nanophotonics using Surface-Enhanced Raman Spectroscopy (SERS) mediated by nanoparticles for the detection of antimicrobials, with emphasis on some beta-lactam antibiotics commonly prescribed in cases of critically ill patients. It is a sensitive and accurate technique for drug monitoring, allowing for rapid and specific detection of its molecular signatures. This approach is crucial to address the challenge of antimicrobial resistance and ensure the therapeutic efficacy of existing treatments. <b>Results:</b> Our experiments demonstrate the possibility of identifying spectra with characteristic vibrations (fingerprints) of these antimicrobials via SERS. <b>Conclusions:</b> Our results point to new strategies for molecular monitoring of drugs by optical techniques using unconventional nanoparticles.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121157","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Beta-lactam antibiotics, derived from penicillin, are the most used class of antimicrobials used for treating bacterial infections. Over the years, microorganisms have developed resistance mechanisms capable of preventing the effect of these drugs. This condition has been a significant public health concern for the 21st century, especially after predictions that antimicrobial resistance could lead to 10 million deaths annually by 2050. The challenge of developing new antimicrobials brings with it the need to ensure the efficacy of existing ones, hence the importance of developing fast and low-cost monitoring techniques. Methods: In this study, we present an alternative based on nanophotonics using Surface-Enhanced Raman Spectroscopy (SERS) mediated by nanoparticles for the detection of antimicrobials, with emphasis on some beta-lactam antibiotics commonly prescribed in cases of critically ill patients. It is a sensitive and accurate technique for drug monitoring, allowing for rapid and specific detection of its molecular signatures. This approach is crucial to address the challenge of antimicrobial resistance and ensure the therapeutic efficacy of existing treatments. Results: Our experiments demonstrate the possibility of identifying spectra with characteristic vibrations (fingerprints) of these antimicrobials via SERS. Conclusions: Our results point to new strategies for molecular monitoring of drugs by optical techniques using unconventional nanoparticles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信