Analysis of the Antibiotic-Potentiating Activity, Absorption, Distribution, Metabolism, and Excretion (ADME) and the Molecular Docking Properties of Phytol Against Multi-Drug-Resistant (MDR) Strains.
José Weverton Almeida-Bezerra, Saulo Almeida Menezes, José Thyálisson da Costa Silva, Simone Galdino de Sousa, Daniel Sampaio Alves, Gabriel Gonçalves Alencar, Isaac Moura Araújo, Ewerton Yago de Sousa Rodrigues, Cícera Datiane de Morais Oliveira-Tintino, Rafael Pereira da Cruz, Janaína Esmeraldo Rocha, Saulo Relison Tintino, José Maria Barbosa-Filho, Maria Flaviana Bezerra Morais-Braga, Irwin Rose Alencar de Menezes, António Raposo, Henrique Douglas Melo Coutinho
{"title":"Analysis of the Antibiotic-Potentiating Activity, Absorption, Distribution, Metabolism, and Excretion (ADME) and the Molecular Docking Properties of Phytol Against Multi-Drug-Resistant (MDR) Strains.","authors":"José Weverton Almeida-Bezerra, Saulo Almeida Menezes, José Thyálisson da Costa Silva, Simone Galdino de Sousa, Daniel Sampaio Alves, Gabriel Gonçalves Alencar, Isaac Moura Araújo, Ewerton Yago de Sousa Rodrigues, Cícera Datiane de Morais Oliveira-Tintino, Rafael Pereira da Cruz, Janaína Esmeraldo Rocha, Saulo Relison Tintino, José Maria Barbosa-Filho, Maria Flaviana Bezerra Morais-Braga, Irwin Rose Alencar de Menezes, António Raposo, Henrique Douglas Melo Coutinho","doi":"10.3390/antibiotics13121171","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the <i>in vitro</i> antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its <i>in silico</i> properties: ADME and molecular docking. <b>Methods:</b> The <i>in vitro</i> antibacterial activity of phytol and the phytol combined with conventional drugs was evaluated by microdilution tests against standard and resistant bacterial strains. Finally, the SwissADME platform was employed to analyse the physicochemical and pharmacokinetic characteristics of phytol. <b>Results:</b> Phytol significantly reduced the Minimum Inhibitory Concentration (MIC) of norfloxacin and gentamicin required to inhibit multidrug-resistant strains of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, respectively. Additionally, ADME analysis revealed that phytol exhibits low toxicity and favourable pharmacokinetic properties; in addition, it is revealed through molecular docking that phytol showed a relevant affinity with the proteins 6GJ1 and 5KDR, however, with values lower than the drugs gentamicin and ampicillin. <b>Conclusions:</b> Collectively, these findings suggest that phytol holds potential as an effective adjuvant in combating antimicrobial resistance.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the in vitro antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its in silico properties: ADME and molecular docking. Methods: The in vitro antibacterial activity of phytol and the phytol combined with conventional drugs was evaluated by microdilution tests against standard and resistant bacterial strains. Finally, the SwissADME platform was employed to analyse the physicochemical and pharmacokinetic characteristics of phytol. Results: Phytol significantly reduced the Minimum Inhibitory Concentration (MIC) of norfloxacin and gentamicin required to inhibit multidrug-resistant strains of Escherichia coli and Staphylococcus aureus, respectively. Additionally, ADME analysis revealed that phytol exhibits low toxicity and favourable pharmacokinetic properties; in addition, it is revealed through molecular docking that phytol showed a relevant affinity with the proteins 6GJ1 and 5KDR, however, with values lower than the drugs gentamicin and ampicillin. Conclusions: Collectively, these findings suggest that phytol holds potential as an effective adjuvant in combating antimicrobial resistance.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.