Mycobacterium tuberculosis F-ATP Synthase Inhibitors and Targets.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Amaravadhi Harikishore, Gerhard Grüber
{"title":"<i>Mycobacterium tuberculosis</i> F-ATP Synthase Inhibitors and Targets.","authors":"Amaravadhi Harikishore, Gerhard Grüber","doi":"10.3390/antibiotics13121169","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacteria tuberculosis</i> (<i>Mtb</i>) infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually. Under harsh growing conditions, the innate response of mycobacteria is to shut down its respiratory metabolism to a basal level, transit into a dormant, non-replicating phase to preserve viability, and establish latent infection. <i>Mtb</i> utilizes non-canonical regulatory mechanisms, such as alternative oxidase pathways, to survive in low oxygen/nutrient conditions. The bacterium's survival in its native microenvironmental niches is aided by its ability to evolve mutations to drug binding sites, enhance overexpression of various enzymes that activate β-lactam antibiotics hydrolysis, or stimulate efflux pathways to ward off the effect of antibiotics. Bedaquiline and its 3,5-dialkoxypyridine analogs, sudapyridine and squaramide S31f, have been shown to be potent <i>Mtb</i> F<sub>1</sub>F<sub>O</sub>-ATP synthase inhibitors of replicating and non-replicating <i>Mtb</i> and have brought oxidative phosphorylation into focus as an anti-TB target. In this review, we attempt to highlight non-canonical structural and regulatory pathogen-specific epitopes of the F<sub>1</sub>-domain, ligand development on such sites, structural classes of inhibitors targeting the Fo-domain, and alternative respiratory metabolic responses that <i>Mtb</i> employs in response to bedaquiline to ensure its survival and establish latent infection.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121169","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacteria tuberculosis (Mtb) infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually. Under harsh growing conditions, the innate response of mycobacteria is to shut down its respiratory metabolism to a basal level, transit into a dormant, non-replicating phase to preserve viability, and establish latent infection. Mtb utilizes non-canonical regulatory mechanisms, such as alternative oxidase pathways, to survive in low oxygen/nutrient conditions. The bacterium's survival in its native microenvironmental niches is aided by its ability to evolve mutations to drug binding sites, enhance overexpression of various enzymes that activate β-lactam antibiotics hydrolysis, or stimulate efflux pathways to ward off the effect of antibiotics. Bedaquiline and its 3,5-dialkoxypyridine analogs, sudapyridine and squaramide S31f, have been shown to be potent Mtb F1FO-ATP synthase inhibitors of replicating and non-replicating Mtb and have brought oxidative phosphorylation into focus as an anti-TB target. In this review, we attempt to highlight non-canonical structural and regulatory pathogen-specific epitopes of the F1-domain, ligand development on such sites, structural classes of inhibitors targeting the Fo-domain, and alternative respiratory metabolic responses that Mtb employs in response to bedaquiline to ensure its survival and establish latent infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信