{"title":"Artificial intelligence in rheumatology research: what is it good for?","authors":"José Miguel Sequí-Sabater, Diego Benavent","doi":"10.1136/rmdopen-2024-004309","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming rheumatology research, with a myriad of studies aiming to improve diagnosis, prognosis and treatment prediction, while also showing potential capability to optimise the research workflow, improve drug discovery and clinical trials. Machine learning, a key element of discriminative AI, has demonstrated the ability of accurately classifying rheumatic diseases and predicting therapeutic outcomes by using diverse data types, including structured databases, imaging and text. In parallel, generative AI, driven by large language models, is becoming a powerful tool for optimising the research workflow by supporting with content generation, literature review automation and clinical decision support. This review explores the current applications and future potential of both discriminative and generative AI in rheumatology. It also highlights the challenges posed by these technologies, such as ethical concerns and the need for rigorous validation and regulatory oversight. The integration of AI in rheumatology promises substantial advancements but requires a balanced approach to optimise benefits and minimise potential possible downsides.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is transforming rheumatology research, with a myriad of studies aiming to improve diagnosis, prognosis and treatment prediction, while also showing potential capability to optimise the research workflow, improve drug discovery and clinical trials. Machine learning, a key element of discriminative AI, has demonstrated the ability of accurately classifying rheumatic diseases and predicting therapeutic outcomes by using diverse data types, including structured databases, imaging and text. In parallel, generative AI, driven by large language models, is becoming a powerful tool for optimising the research workflow by supporting with content generation, literature review automation and clinical decision support. This review explores the current applications and future potential of both discriminative and generative AI in rheumatology. It also highlights the challenges posed by these technologies, such as ethical concerns and the need for rigorous validation and regulatory oversight. The integration of AI in rheumatology promises substantial advancements but requires a balanced approach to optimise benefits and minimise potential possible downsides.
期刊介绍:
RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.