Waste drilling fluid flocculation identification method based on improved YOLOv8n.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Min Wan, Xin Yang, Huaibang Zhang
{"title":"Waste drilling fluid flocculation identification method based on improved YOLOv8n.","authors":"Min Wan, Xin Yang, Huaibang Zhang","doi":"10.1063/5.0235362","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient identification of the flocculation state of waste drilling fluid remains a significant challenge. This study proposes an improved You Only Look Once version 8 nano-algorithm (YOLOv8n), specifically optimized for real-time monitoring of drilling fluid flocculation under field conditions. The algorithm employs MobileNetV3 as the backbone network to minimize memory usage, improve detection speed, and reduce computational requirements. The integration of the efficient multi-scale attention mechanism into the cross-stage partial fusion module effectively mitigates detail loss, resulting in improved detection performance for images with high similarity. The wise intersection over union loss function is employed to accelerate bounding box convergence and improve inference accuracy. Experimental results show that the enhanced YOLOv8n algorithm achieves an average recognition accuracy of 98.6% on the experimental dataset, a 4.8% improvement over the original model. In addition, the model size and parameter count are reduced to 2.9 MB and 2.8 Giga Floating-Point Operations Per Second (GFLOPS), respectively, compared to the original model, reflecting a reduction of 3.2 MB and 5.3 GFLOPS. As a result, the proposed flocculation recognition algorithm is highly deployable and effectively predicts flocculation state changes across varying working conditions.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0235362","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient identification of the flocculation state of waste drilling fluid remains a significant challenge. This study proposes an improved You Only Look Once version 8 nano-algorithm (YOLOv8n), specifically optimized for real-time monitoring of drilling fluid flocculation under field conditions. The algorithm employs MobileNetV3 as the backbone network to minimize memory usage, improve detection speed, and reduce computational requirements. The integration of the efficient multi-scale attention mechanism into the cross-stage partial fusion module effectively mitigates detail loss, resulting in improved detection performance for images with high similarity. The wise intersection over union loss function is employed to accelerate bounding box convergence and improve inference accuracy. Experimental results show that the enhanced YOLOv8n algorithm achieves an average recognition accuracy of 98.6% on the experimental dataset, a 4.8% improvement over the original model. In addition, the model size and parameter count are reduced to 2.9 MB and 2.8 Giga Floating-Point Operations Per Second (GFLOPS), respectively, compared to the original model, reflecting a reduction of 3.2 MB and 5.3 GFLOPS. As a result, the proposed flocculation recognition algorithm is highly deployable and effectively predicts flocculation state changes across varying working conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信