Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Yuki Akura, Yasuaki Ikeda, Yuki Matsunaga, Masaki Shimofuri, Amit Banerjee, Toshiyuki Tsuchiya, Jun Hirotani
{"title":"Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.","authors":"Yuki Akura, Yasuaki Ikeda, Yuki Matsunaga, Masaki Shimofuri, Amit Banerjee, Toshiyuki Tsuchiya, Jun Hirotani","doi":"10.1063/5.0237004","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR. In this approach, the irradiation positions of the pump and probe lasers are spatially offset to enhance sensitivity to in-plane thermal conductivity. Previous implementations primarily adjusted the laser positions by modifying the mirror angle, which inadvertently distorted the laser spot. Such distortion significantly compromises measurement accuracy, which is especially critical in beam-offset FDTR, where the spot radius has a crucial impact on measured values. This study introduces an advanced FDTR measurement system that realizes probe laser offset without inducing spot distortion, utilizing a relay optical system. The system was applied to measure the thermal conductivities of both isotropic standard materials and anisotropic samples, including highly oriented pyrolytic graphite and graphene. The findings corroborate those of prior studies, validating the measurement's reliability in terms of sensitivity. This development of a beam-offset FDTR system without laser spot distortion establishes a robust basis for accurate thermal conductivity values of anisotropic materials via thermoreflectance methods.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0237004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR. In this approach, the irradiation positions of the pump and probe lasers are spatially offset to enhance sensitivity to in-plane thermal conductivity. Previous implementations primarily adjusted the laser positions by modifying the mirror angle, which inadvertently distorted the laser spot. Such distortion significantly compromises measurement accuracy, which is especially critical in beam-offset FDTR, where the spot radius has a crucial impact on measured values. This study introduces an advanced FDTR measurement system that realizes probe laser offset without inducing spot distortion, utilizing a relay optical system. The system was applied to measure the thermal conductivities of both isotropic standard materials and anisotropic samples, including highly oriented pyrolytic graphite and graphene. The findings corroborate those of prior studies, validating the measurement's reliability in terms of sensitivity. This development of a beam-offset FDTR system without laser spot distortion establishes a robust basis for accurate thermal conductivity values of anisotropic materials via thermoreflectance methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信