{"title":"Structure characterization of Grifola frondosa polysaccharide and its effect on insulin resistance in HFD-fed mice.","authors":"Yin-Yi Ding, Jinchi Lan, Yuxin Wang, Yuxiang Pan, Tianyuan Song, Shizhu Liu, Zhenyu Gu, Yujun Ge","doi":"10.1038/s41538-024-00359-7","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2. The molecular weight of GFP-N1 and GFP-N2 was 3.323×10<sup>3 </sup>kDa and 10.8 kDa, respectively. GFP-N1 was composed of glucose and galactose and 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP-N2 was composed of glucose, galactose and mannose and 1 → 2, 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP could significantly relieve the insulin resistance induced by HFD. GFP significantly alleviated gut microbiota disturbance caused by HFD and increased the production of short-chain fatty acids, and further reduced the expression of LPS/TLR4 inflammatory pathway. GFP significantly reduced the oxidative stress induced by HFD, increased the expression of the Nrf2/ARE signaling pathway. These results indicated that GFP could be developed as a potential ingredient for the management of insulin resistance.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"3"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-024-00359-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2. The molecular weight of GFP-N1 and GFP-N2 was 3.323×103 kDa and 10.8 kDa, respectively. GFP-N1 was composed of glucose and galactose and 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP-N2 was composed of glucose, galactose and mannose and 1 → 2, 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP could significantly relieve the insulin resistance induced by HFD. GFP significantly alleviated gut microbiota disturbance caused by HFD and increased the production of short-chain fatty acids, and further reduced the expression of LPS/TLR4 inflammatory pathway. GFP significantly reduced the oxidative stress induced by HFD, increased the expression of the Nrf2/ARE signaling pathway. These results indicated that GFP could be developed as a potential ingredient for the management of insulin resistance.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.