Coexpression of D-Allulose 3-Epimerase and L-Rhamnose Isomerase in Bacillus subtilis through a Dual Promoter Enables High-Level Biosynthesis of D-Allose from D-Fructose in One Pot

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xinrui Tang, Abdullah Arsalan, Guoyan Zhang, Junhua Yun, Cunsheng Zhang, Xianghui Qi
{"title":"Coexpression of D-Allulose 3-Epimerase and L-Rhamnose Isomerase in Bacillus subtilis through a Dual Promoter Enables High-Level Biosynthesis of D-Allose from D-Fructose in One Pot","authors":"Xinrui Tang, Abdullah Arsalan, Guoyan Zhang, Junhua Yun, Cunsheng Zhang, Xianghui Qi","doi":"10.1021/acs.jafc.4c09787","DOIUrl":null,"url":null,"abstract":"<span>D</span>-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of <span>D</span>-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of <i>Blautia produca</i> <span>D</span>-allulose 3-epimerase (Bp-DAE) and <i>Bacillus subtilis</i> <span>L</span>-rhamnose isomerase (BsL-RI) within a single cell using <i>B. subtilis</i> WB800N as the host. Using this system, <span>D</span>-allose was synthesized via a simple, cost-effective, one-pot enzymatic process, employing whole cells as catalysts and <span>D</span>-fructose as the substrate. The system exhibited optimal activity at 65 °C, pH 8.5, with 1 mM Mn<sup>2+</sup> and 20 g/L of whole-cell dry weight. Initial production reached 12.5 g/L <span>D</span>-allose with a 12.5% yield from 100 g/L <span>D</span>-fructose. Optimization of dual promoter combinations enhanced production, achieving 15.0, 29.1, and 43.2 g/L <span>D</span>-allose from 100, 200, and 300 g/L <span>D</span>-fructose, with yields of 15.00, 14.55, and 14.40%, respectively. This <span>D</span>-allose production biocatalyst offers a scalable and economically viable platform for the industrial production of rare sugar.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"85 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09787","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of Blautia produca D-allulose 3-epimerase (Bp-DAE) and Bacillus subtilis L-rhamnose isomerase (BsL-RI) within a single cell using B. subtilis WB800N as the host. Using this system, D-allose was synthesized via a simple, cost-effective, one-pot enzymatic process, employing whole cells as catalysts and D-fructose as the substrate. The system exhibited optimal activity at 65 °C, pH 8.5, with 1 mM Mn2+ and 20 g/L of whole-cell dry weight. Initial production reached 12.5 g/L D-allose with a 12.5% yield from 100 g/L D-fructose. Optimization of dual promoter combinations enhanced production, achieving 15.0, 29.1, and 43.2 g/L D-allose from 100, 200, and 300 g/L D-fructose, with yields of 15.00, 14.55, and 14.40%, respectively. This D-allose production biocatalyst offers a scalable and economically viable platform for the industrial production of rare sugar.

Abstract Image

通过双启动子在枯草芽孢杆菌中共表达D-Allulose 3- epimase和l -鼠李糖异构酶,使d -果糖在一个锅中高水平合成D-Allose
D-Allose是一种罕见的糖,它不仅是一种低热量的甜味剂,而且还具有抗癌、抗肿瘤、抗炎、抗氧化和其他药物特性。尽管具有潜力,但由于生物催化剂效率低、转化率低和底物成本高,实现D-allose的高水平生物合成仍然具有挑战性。本研究以枯草芽孢杆菌WB800N为寄主,探讨了产蓝芽孢杆菌D-allulose 3- epimase (Bp-DAE)和枯草芽孢杆菌l -鼠李糖异构酶(BsL-RI)在单个细胞内的食品级共表达。利用该体系,以全细胞为催化剂,d -果糖为底物,通过简单、经济、一锅的酶促工艺合成了d -醛糖。该体系在65℃、pH 8.5、1 mM Mn2+和20 g/L全细胞干重条件下表现出最佳活性。初始产量达到12.5 g/L d -果糖,100 g/L d -果糖产量为12.5%。双启动子组合的优化提高了产量,从100、200和300 g/L的d -果糖中分别获得15.0、29.1和43.2 g/L的d -果糖,产量分别为15.00、14.55和14.40%。这种D-allose生产生物催化剂为稀有糖的工业生产提供了一个可扩展且经济可行的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
文献相关原料
公司名称
产品信息
麦克林
Ampicillin
麦克林
erythromycin
麦克林
D-fructose
麦克林
D-allulose
麦克林
D-allose
麦克林
ampicillin
麦克林
erythromycin
麦克林
D-fructose
麦克林
D-allulose
麦克林
D-allose
阿拉丁
Ampicillin
阿拉丁
erythromycin
阿拉丁
D-fructose
阿拉丁
D-allulose
阿拉丁
D-allose
阿拉丁
D-fructose
阿拉丁
D-allulose
阿拉丁
D-allose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信