Ghader Darbandy;Malte Koch;Lukas M. Bongartz;Karl Leo;Hans Kleemann;Alexander Kloes
{"title":"Charge-Based Compact Modeling of OECTs for Neuromorphic Applications","authors":"Ghader Darbandy;Malte Koch;Lukas M. Bongartz;Karl Leo;Hans Kleemann;Alexander Kloes","doi":"10.1109/JEDS.2024.3522577","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors (OECTs) are a class of promising neuromorphic devices due to their exceptional conductivity, ease of fabrication, and cost-effectiveness. These devices exhibit ionic behavior similar to biological synapses, enabling efficient switching. Developing a compact model for OECTs is challenging due to the complex interplay of electrochemical reactions, ion transport, interactions with electrons or holes, and charge carrier dynamics that must be accurately captured and integrated into a simplified framework. In this work, we develop a combined physics-based compact model that integrates the Nernst equation from electrochemistry with thermally activated charges from semiconductor physics. This model enables easy incorporation into circuit simulations and provides a simple core framework for further extensions to account for additional effects. We fabricated, characterized, and analyzed OECTs based on PEDOT:PSS, and the proposed compact model shows good agreement with our experimental data.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"34-40"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816051/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Organic electrochemical transistors (OECTs) are a class of promising neuromorphic devices due to their exceptional conductivity, ease of fabrication, and cost-effectiveness. These devices exhibit ionic behavior similar to biological synapses, enabling efficient switching. Developing a compact model for OECTs is challenging due to the complex interplay of electrochemical reactions, ion transport, interactions with electrons or holes, and charge carrier dynamics that must be accurately captured and integrated into a simplified framework. In this work, we develop a combined physics-based compact model that integrates the Nernst equation from electrochemistry with thermally activated charges from semiconductor physics. This model enables easy incorporation into circuit simulations and provides a simple core framework for further extensions to account for additional effects. We fabricated, characterized, and analyzed OECTs based on PEDOT:PSS, and the proposed compact model shows good agreement with our experimental data.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.