{"title":"A Bifunctional “Two-in-One” Array for Simultaneous Diagnosis of Irritable Bowel Syndrome and Identification of Low-FODMAP Diets","authors":"Shujie Cheng, Wenqi Xiao, Fangfang Shi, Zihao Zhao, Xuejuan Gao, Yanliang Zhang, Hui Huang, Fei Li, Chongjiang Cao, Jinsong Han","doi":"10.1021/acs.jafc.4c08690","DOIUrl":null,"url":null,"abstract":"Irritable bowel syndrome (IBS) is a globally prevalent functional gastrointestinal disorder frequently misdiagnosed due to overlapping symptoms with other diseases. Currently, there are no rapid and effective diagnostic or therapeutic approaches for IBS. Despite this, low-FODMAP diets (LFDs) have become a major dietary intervention strategy for symptom relief. However, detecting FODMAPs usually relies on chromatographic techniques, which are costly and time-consuming, making it difficult to apply in real-time detection. In this study, we introduce the first dual-functional sensor array capable of rapidly diagnosing IBS and identifying low-FODMAP diets. This six-element array was constructed using nitrophenylboronic acid-modified poly(ethylenimine) coupled with coumarins through dynamic borate ester bonds across a range of pH conditions. Optimized by diverse machine learning algorithms, with the multilayer perceptron (MLP) algorithm proving optimal, the array enabled the simultaneous identification of 12 intestinal bacteria with 99.2% accuracy and the detection of mouse fecal specimens with varying degrees of IBS with 99.8% accuracy within seconds. Furthermore, it allowed for the detection of various FODMAP levels in commercially purchased, brand-named, and differently processed soy milk. The array demonstrates potential for use in both the clinical diagnosis of IBS and the guiding of low-FODMAP diets for patients.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"45 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08690","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Irritable bowel syndrome (IBS) is a globally prevalent functional gastrointestinal disorder frequently misdiagnosed due to overlapping symptoms with other diseases. Currently, there are no rapid and effective diagnostic or therapeutic approaches for IBS. Despite this, low-FODMAP diets (LFDs) have become a major dietary intervention strategy for symptom relief. However, detecting FODMAPs usually relies on chromatographic techniques, which are costly and time-consuming, making it difficult to apply in real-time detection. In this study, we introduce the first dual-functional sensor array capable of rapidly diagnosing IBS and identifying low-FODMAP diets. This six-element array was constructed using nitrophenylboronic acid-modified poly(ethylenimine) coupled with coumarins through dynamic borate ester bonds across a range of pH conditions. Optimized by diverse machine learning algorithms, with the multilayer perceptron (MLP) algorithm proving optimal, the array enabled the simultaneous identification of 12 intestinal bacteria with 99.2% accuracy and the detection of mouse fecal specimens with varying degrees of IBS with 99.8% accuracy within seconds. Furthermore, it allowed for the detection of various FODMAP levels in commercially purchased, brand-named, and differently processed soy milk. The array demonstrates potential for use in both the clinical diagnosis of IBS and the guiding of low-FODMAP diets for patients.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.