Sensitive characterization of complex chemical reactions in black garlic preparation based on on-line extraction electrospray ionization mass spectrometry

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Xiang Li, Jianghui Sun, Junhui Zhou, QianNan Hu, Yutong Hua, Yaqiu Zhao, Jian Yang, Zidong Qiu, Liping Kang, Lanping Guo
{"title":"Sensitive characterization of complex chemical reactions in black garlic preparation based on on-line extraction electrospray ionization mass spectrometry","authors":"Xiang Li, Jianghui Sun, Junhui Zhou, QianNan Hu, Yutong Hua, Yaqiu Zhao, Jian Yang, Zidong Qiu, Liping Kang, Lanping Guo","doi":"10.1016/j.foodchem.2025.142793","DOIUrl":null,"url":null,"abstract":"Changes in chemical composition during food processing and handling are crucial for the alteration of food flavor and function, and accurate characterization of key chemical reaction pathways in complex food matrices is one of the core challenges in food chemistry research. Here, this study attempts to establish a strategy for sensitive characterization of chemical reactions during food processing based on on-line extraction electrospray ionization mass spectrometry (oEESI-MS). The process of making garlic into black garlic, a traditional global flavor food, was chosen as an exemplary research template. The direct MS characterization of raw garlic as well as black garlic samples with different processing times was achieved by using the self-constructed oEESI-MS device. Benefiting from the high tolerance of oEESI-MS to complex matrix interferences, all samples can be fingerprinted directly without any pre-processing or pre-separation. As a result, oEESI-MS achieved a sensitive characterization of the changes of key substances during the preparation of black garlic. Further, a new chemical reaction pathway, the degradation of γ-L-glutamyl-S-allyl-L-cysteine to S-allyl-l-cysteine, was completely demonstrated by analyzing the differential substances before and after the treatment, and verified by standard substances and chemical theory calculations. In conclusion, a complete oEESI-MS-based strategy for tracking the substance changes in food processing was established in this study, which has a widely applicable prospect for the precise setting of food processing time and parameters, and the innovation of processing technology.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"4 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142793","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in chemical composition during food processing and handling are crucial for the alteration of food flavor and function, and accurate characterization of key chemical reaction pathways in complex food matrices is one of the core challenges in food chemistry research. Here, this study attempts to establish a strategy for sensitive characterization of chemical reactions during food processing based on on-line extraction electrospray ionization mass spectrometry (oEESI-MS). The process of making garlic into black garlic, a traditional global flavor food, was chosen as an exemplary research template. The direct MS characterization of raw garlic as well as black garlic samples with different processing times was achieved by using the self-constructed oEESI-MS device. Benefiting from the high tolerance of oEESI-MS to complex matrix interferences, all samples can be fingerprinted directly without any pre-processing or pre-separation. As a result, oEESI-MS achieved a sensitive characterization of the changes of key substances during the preparation of black garlic. Further, a new chemical reaction pathway, the degradation of γ-L-glutamyl-S-allyl-L-cysteine to S-allyl-l-cysteine, was completely demonstrated by analyzing the differential substances before and after the treatment, and verified by standard substances and chemical theory calculations. In conclusion, a complete oEESI-MS-based strategy for tracking the substance changes in food processing was established in this study, which has a widely applicable prospect for the precise setting of food processing time and parameters, and the innovation of processing technology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信