{"title":"Enhanced ammonia-sensitive intelligent films based on a metal-organic framework for accurate shrimp freshness monitoring","authors":"Yuxiao Hu, Zhijian Tan","doi":"10.1016/j.foodchem.2025.142805","DOIUrl":null,"url":null,"abstract":"Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied. Notably, this film demonstrated effective ammonia-sensitive color development, reaching a Δ<em>E</em> value of 8.5 in 2 min under an ammonia atmosphere of approximately 0.4 mM. This intelligent film exhibits good DPPH free radical scavenging ability, high thermal stability, and excellent theoretical limit of detection (LOD). Interestingly, shrimp can be classified as “fresh”, “sub-fresh”, and “spoilage” during the monitoring of shrimp freshness. Furthermore, a significant correlation (<em>R</em><sup>2</sup> = 0.9641) was observed between the TVB-N and Δ<em>E</em> value for this film. Therefore, this intelligent film is promising for the real-time monitoring of freshness of shrimp and other protein-rich foods.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"16 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142805","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied. Notably, this film demonstrated effective ammonia-sensitive color development, reaching a ΔE value of 8.5 in 2 min under an ammonia atmosphere of approximately 0.4 mM. This intelligent film exhibits good DPPH free radical scavenging ability, high thermal stability, and excellent theoretical limit of detection (LOD). Interestingly, shrimp can be classified as “fresh”, “sub-fresh”, and “spoilage” during the monitoring of shrimp freshness. Furthermore, a significant correlation (R2 = 0.9641) was observed between the TVB-N and ΔE value for this film. Therefore, this intelligent film is promising for the real-time monitoring of freshness of shrimp and other protein-rich foods.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.