Xuefei Wang, Yanhan Ren, Shi Qiu, Fan Zhang, Xueao Li, Junfeng Gao, Weiwei Gao, Jijun Zhao
{"title":"Cluster sliding ferroelectricity in trilayer Quasi-Hexagonal C60","authors":"Xuefei Wang, Yanhan Ren, Shi Qiu, Fan Zhang, Xueao Li, Junfeng Gao, Weiwei Gao, Jijun Zhao","doi":"10.1038/s41524-024-01511-3","DOIUrl":null,"url":null,"abstract":"<p>Electric polarization typically originates from non-centrosymmetric charge distributions in compounds. In elemental crystalline materials, chemical bonds between atoms of the same element favor symmetrically distributed electron charges and centrosymmetric structures, making elemental ferroelectrics rare. Compared to atoms, elemental clusters are intrinsically less symmetric and can have various preferred orientations when they are assembled to form crystals. Consequently, the assembly of clusters with different orientations tends to break the inversion symmetry. By exploiting this concept, we show that sliding ferroelectricity naturally emerges in trilayer quasi-hexagonal phase (qHP) C<sub>60</sub>, a cluster-assembled carbon allotrope recently synthesized. Compared to many metallic or semi-metallic elemental ferroelectrics, trilayer qHP C<sub>60</sub>’s have sizable band gaps and several ferroelectric structures, which are distinguishable by measuring their second-harmonic generation (SHG) responses. Some of these phases show both switchable out-of-plane and in-plane polarizations on the order of 0.2 pC/m. The out-of-plane and in-plane polarizations can be switched independently and enable an easy-to-implement construction of Van der Waals homostructures with ferroelectrically switchable chirality.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01511-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electric polarization typically originates from non-centrosymmetric charge distributions in compounds. In elemental crystalline materials, chemical bonds between atoms of the same element favor symmetrically distributed electron charges and centrosymmetric structures, making elemental ferroelectrics rare. Compared to atoms, elemental clusters are intrinsically less symmetric and can have various preferred orientations when they are assembled to form crystals. Consequently, the assembly of clusters with different orientations tends to break the inversion symmetry. By exploiting this concept, we show that sliding ferroelectricity naturally emerges in trilayer quasi-hexagonal phase (qHP) C60, a cluster-assembled carbon allotrope recently synthesized. Compared to many metallic or semi-metallic elemental ferroelectrics, trilayer qHP C60’s have sizable band gaps and several ferroelectric structures, which are distinguishable by measuring their second-harmonic generation (SHG) responses. Some of these phases show both switchable out-of-plane and in-plane polarizations on the order of 0.2 pC/m. The out-of-plane and in-plane polarizations can be switched independently and enable an easy-to-implement construction of Van der Waals homostructures with ferroelectrically switchable chirality.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.