Magnetic Continuum Robot With Modular Axial Magnetization: Design, Modeling, Optimization, and Control

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Yanfei Cao;Mingxue Cai;Bonan Sun;Zhaoyang Qi;Junnan Xue;Yihang Jiang;Bo Hao;Jiaqi Zhu;Xurui Liu;Chaoyu Yang;Li Zhang
{"title":"Magnetic Continuum Robot With Modular Axial Magnetization: Design, Modeling, Optimization, and Control","authors":"Yanfei Cao;Mingxue Cai;Bonan Sun;Zhaoyang Qi;Junnan Xue;Yihang Jiang;Bo Hao;Jiaqi Zhu;Xurui Liu;Chaoyu Yang;Li Zhang","doi":"10.1109/TRO.2025.3526077","DOIUrl":null,"url":null,"abstract":"Magnetic continuum robots (MCRs) have become popular owing to their inherent advantages of easy miniaturization without requiring complicated transmission structures. The evolution of MCRs, from initial designs with one embedded magnet to current designs with specific magnetization profile configurations (MPCs), has significantly enhanced their dexterity. While much progress has been achieved, the quantitative index-based evaluation of deformability for different MPCs, which can assist in designing MPCs with enhanced robot deformability, has not been addressed before. Here, we use “deformability” to describe the capability for body deflection when an MCR forms different global shapes under an external magnetic field. Therefore, in this article, we propose methodologies to design and control an MCR composed of modular axially magnetized segments. To guide robot MPC design, for the first time, we introduce a quantitative index-based evaluation strategy to analyze and optimize robot deformability. In addition, a control framework with neural network-based controllers is developed to endow the robot with two control modes: the robot tip position and orientation (<inline-formula><tex-math>$M_{1}$</tex-math></inline-formula>) and the global shape (<inline-formula><tex-math>$M_{2}$</tex-math></inline-formula>). The excellent performance of the learnt controllers in terms of computation time and accuracy was validated via both simulation and experimental platforms. In the experimental results, the best closed-loop control performance metrics, indicated as the mean absolute errors, were 0.254 mm and 0.626<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula> for mode <inline-formula><tex-math>$M_{1}$</tex-math></inline-formula> and 1.564 mm and 0.086<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula> for mode <inline-formula><tex-math>$M_{2}$</tex-math></inline-formula>.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1513-1532"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824957","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10824957/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic continuum robots (MCRs) have become popular owing to their inherent advantages of easy miniaturization without requiring complicated transmission structures. The evolution of MCRs, from initial designs with one embedded magnet to current designs with specific magnetization profile configurations (MPCs), has significantly enhanced their dexterity. While much progress has been achieved, the quantitative index-based evaluation of deformability for different MPCs, which can assist in designing MPCs with enhanced robot deformability, has not been addressed before. Here, we use “deformability” to describe the capability for body deflection when an MCR forms different global shapes under an external magnetic field. Therefore, in this article, we propose methodologies to design and control an MCR composed of modular axially magnetized segments. To guide robot MPC design, for the first time, we introduce a quantitative index-based evaluation strategy to analyze and optimize robot deformability. In addition, a control framework with neural network-based controllers is developed to endow the robot with two control modes: the robot tip position and orientation ($M_{1}$) and the global shape ($M_{2}$). The excellent performance of the learnt controllers in terms of computation time and accuracy was validated via both simulation and experimental platforms. In the experimental results, the best closed-loop control performance metrics, indicated as the mean absolute errors, were 0.254 mm and 0.626$^\circ$ for mode $M_{1}$ and 1.564 mm and 0.086$^\circ$ for mode $M_{2}$.
具有模块化轴向磁化的磁性连续体机器人:设计、建模、优化和控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信