Rice husk- and lemongrass-derived eco-enzymes as potential food contact surface disinfectants against biofilm-forming foodborne pathogens.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Vickneish Vimalanathan, Hanan Hasan, Vickineshwari Kunasegaran, Kausalyaa Sarawanan, Monisha Ilangovan, Pratheep Sandrasaigaran
{"title":"Rice husk- and lemongrass-derived eco-enzymes as potential food contact surface disinfectants against biofilm-forming foodborne pathogens.","authors":"Vickneish Vimalanathan, Hanan Hasan, Vickineshwari Kunasegaran, Kausalyaa Sarawanan, Monisha Ilangovan, Pratheep Sandrasaigaran","doi":"10.1093/femsle/fnae116","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to evaluate the rice husk (EE-R)- and lemongrass (EE-L)-derived eco-enzymes (EE) as alternatives to chemical-based disinfectants. The EE-R's and EE-L's antimicrobial activity were tested against Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus using a broth microdilution method. The antibiofilm activities of EE were determined using crystal violet staining. Lastly, the minimal contact time of EE for effectively reducing biofilm-forming pathogens (<25 CFU/ml) was assessed on various food contact surfaces (wood, glass, plastic, stainless steel, and marble). The results show that EE-R at 25%-50% concentration significantly inhibited P. aeruginosa and S. aureus while reducing the initial biofilm formation by 61% and 58%, respectively. In contrast, EE-L inhibited S. Typhimurium at a concentration of 12.5%-50% and P. aeruginosa at 25%-50%, with a strong preformed biofilm inhibition noticed for S. Typhimurium (70%). For the minimal contact time, EE-R superiorly inhibited P. aeruginosa (60 s) and S. aureus (120 s) on all contact surfaces, while EE-L needed 120 s to reduce P. aeruginosa and S. Typhimurium. These outcomes were comparable to sodium hypochlorite (NaOCl, 2.5%). The study's outcomes implicate the potential application of EE-R and EE-L as surface disinfectants against biofilm-forming bacteria, thus promoting safer food processing practices while minimizing environmental impacts.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae116","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to evaluate the rice husk (EE-R)- and lemongrass (EE-L)-derived eco-enzymes (EE) as alternatives to chemical-based disinfectants. The EE-R's and EE-L's antimicrobial activity were tested against Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus using a broth microdilution method. The antibiofilm activities of EE were determined using crystal violet staining. Lastly, the minimal contact time of EE for effectively reducing biofilm-forming pathogens (<25 CFU/ml) was assessed on various food contact surfaces (wood, glass, plastic, stainless steel, and marble). The results show that EE-R at 25%-50% concentration significantly inhibited P. aeruginosa and S. aureus while reducing the initial biofilm formation by 61% and 58%, respectively. In contrast, EE-L inhibited S. Typhimurium at a concentration of 12.5%-50% and P. aeruginosa at 25%-50%, with a strong preformed biofilm inhibition noticed for S. Typhimurium (70%). For the minimal contact time, EE-R superiorly inhibited P. aeruginosa (60 s) and S. aureus (120 s) on all contact surfaces, while EE-L needed 120 s to reduce P. aeruginosa and S. Typhimurium. These outcomes were comparable to sodium hypochlorite (NaOCl, 2.5%). The study's outcomes implicate the potential application of EE-R and EE-L as surface disinfectants against biofilm-forming bacteria, thus promoting safer food processing practices while minimizing environmental impacts.

稻壳和柠檬草衍生的生态酶作为潜在的食品接触面消毒剂对抗生物膜形成的食源性病原体。
本研究旨在评价稻壳(EE- r)和柠檬草(EE- l)衍生的生态酶(EE)作为化学消毒剂的替代品。采用微量肉汤稀释法检测EE-R和EE-L对铜绿假单胞菌、鼠伤寒沙门菌和金黄色葡萄球菌的抑菌活性。用结晶紫染色法测定EE的抗菌活性。最后,EE的最小接触时间可以有效减少形成生物膜的病原体(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信