Ziyi Meng, Xu Yan, Nima Azarakhsh, Hanying Duan, Hosahalli S. Ramaswamy, Chao Wang
{"title":"Preparation, modification, characterization, and stability evaluation of 5-methyltetrahydrofolate liposomes","authors":"Ziyi Meng, Xu Yan, Nima Azarakhsh, Hanying Duan, Hosahalli S. Ramaswamy, Chao Wang","doi":"10.1016/j.foodchem.2025.142792","DOIUrl":null,"url":null,"abstract":"As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P). Chitosan–nanoliposome (CH–NL) and pectin–chitosan–nanoliposome (P–CH–NL) were created, each featuring a core–shell structure. P–CH–NL achieved an encapsulation efficiency of 64.62 %, loading efficiency of 1.05 mg/g, and particle size of 285.86 nm. It exhibited better physical stability and 5-MTHF retention (>80 %) under various conditions, including salt and pH variations, as well as oxidative, thermal, fermentation, and UV stress. During in vitro digestion, P–CH–NL protected 5-MTHF until it was released into the small intestine. This study highlighted the application prospects of multilayer liposome-loaded 5-MTHF as a stable, highly digestible folate supplement.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"36 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142792","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P). Chitosan–nanoliposome (CH–NL) and pectin–chitosan–nanoliposome (P–CH–NL) were created, each featuring a core–shell structure. P–CH–NL achieved an encapsulation efficiency of 64.62 %, loading efficiency of 1.05 mg/g, and particle size of 285.86 nm. It exhibited better physical stability and 5-MTHF retention (>80 %) under various conditions, including salt and pH variations, as well as oxidative, thermal, fermentation, and UV stress. During in vitro digestion, P–CH–NL protected 5-MTHF until it was released into the small intestine. This study highlighted the application prospects of multilayer liposome-loaded 5-MTHF as a stable, highly digestible folate supplement.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.