Nanomineralzyme as a novel sustainable class of nanozyme: Chalcopyrite-based nanozyme for the visual detection of total antioxidant capacity in citrus fruit
Sameera Sh. Mohammed Ameen, Azad H. Alshatteri, Dnya A. Latif, Yousif O. Mohammad, Khalid M. Omer
{"title":"Nanomineralzyme as a novel sustainable class of nanozyme: Chalcopyrite-based nanozyme for the visual detection of total antioxidant capacity in citrus fruit","authors":"Sameera Sh. Mohammed Ameen, Azad H. Alshatteri, Dnya A. Latif, Yousif O. Mohammad, Khalid M. Omer","doi":"10.1016/j.foodchem.2025.142769","DOIUrl":null,"url":null,"abstract":"Chemically-synthesized Nanozymes that are widely used as alternatives to enzymes face challenges such as high precursor costs, complex preparation processes, and limited catalytic efficiency. To overcome these drawbacks, we introduce naturally derived nanozymes, nanomineralzymes, as a promising alternative, offering benefits like affordability, cost-effectiveness, and scalability. Chalcopyrite (CP, CuFeS<sub>2</sub>) was sourced from a mineral deposit, and CP nanoparticles were produced by milling. These nanoparticles exhibited strong peroxidase-like activity, achieving a low Michaelis-Menten constant using 3,3′,5,5′-tetramethylbenzidine as a substrate. Characterizations revealed the presence of cuprous, cupric, ferrous, and ferric ions in the CP mineral. The proposed mechanism involves an enhanced Fenton and Fenton-like process due to the metal ions' multi-valence states. CP nanozyme activity was inhibited to produce radicals due to hydrogen atom transfer and single electron transfer with ascorbic acid, glutathione and cysteine. The CP mineralzyme-based total antioxidant capacity probe was successfully used for detection of TAC in citrus fruits.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"27 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142769","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chemically-synthesized Nanozymes that are widely used as alternatives to enzymes face challenges such as high precursor costs, complex preparation processes, and limited catalytic efficiency. To overcome these drawbacks, we introduce naturally derived nanozymes, nanomineralzymes, as a promising alternative, offering benefits like affordability, cost-effectiveness, and scalability. Chalcopyrite (CP, CuFeS2) was sourced from a mineral deposit, and CP nanoparticles were produced by milling. These nanoparticles exhibited strong peroxidase-like activity, achieving a low Michaelis-Menten constant using 3,3′,5,5′-tetramethylbenzidine as a substrate. Characterizations revealed the presence of cuprous, cupric, ferrous, and ferric ions in the CP mineral. The proposed mechanism involves an enhanced Fenton and Fenton-like process due to the metal ions' multi-valence states. CP nanozyme activity was inhibited to produce radicals due to hydrogen atom transfer and single electron transfer with ascorbic acid, glutathione and cysteine. The CP mineralzyme-based total antioxidant capacity probe was successfully used for detection of TAC in citrus fruits.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.