Yue Sun, Xueying Zhang, Jiayu Li, Xiaodong Li, Lu Liu, Kouadio Jean Eric-Parfait Kouame
{"title":"Improving fat globule structure to narrow metabolite gap between human milk and infant formulae","authors":"Yue Sun, Xueying Zhang, Jiayu Li, Xiaodong Li, Lu Liu, Kouadio Jean Eric-Parfait Kouame","doi":"10.1016/j.foodchem.2025.142797","DOIUrl":null,"url":null,"abstract":"We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1). Glycerophosphocholines were screened as potential biomarkers to distinguish infant formulae from human milk. Compared with F2 and IF1, the enrichment of amino acid metabolism and lipid metabolism pathways was not significant between F1 and human milk. These results emphasized that F1 had the highest similarity to human milk in metabolic properties.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"34 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142797","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1). Glycerophosphocholines were screened as potential biomarkers to distinguish infant formulae from human milk. Compared with F2 and IF1, the enrichment of amino acid metabolism and lipid metabolism pathways was not significant between F1 and human milk. These results emphasized that F1 had the highest similarity to human milk in metabolic properties.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.