Yaning Xiao, Hao Cui, Ruba Abu Khurma, Pedro A. Castillo
{"title":"Artificial lemming algorithm: a novel bionic meta-heuristic technique for solving real-world engineering optimization problems","authors":"Yaning Xiao, Hao Cui, Ruba Abu Khurma, Pedro A. Castillo","doi":"10.1007/s10462-024-11023-7","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of the intelligent information era has witnessed a proliferation of complex optimization problems across various disciplines. Although existing meta-heuristic algorithms have demonstrated efficacy in many scenarios, they still struggle with certain challenges such as premature convergence, insufficient exploration, and lack of robustness in high-dimensional, nonconvex search spaces. These limitations underscore the need for novel optimization techniques that can better balance exploration and exploitation while maintaining computational efficiency. In response to this need, we propose the Artificial Lemming Algorithm (ALA), a bio-inspired metaheuristic that mathematically models four distinct behaviors of lemmings in nature: long-distance migration, digging holes, foraging, and evading predators. Specifically, the long-distance migration and burrow digging behaviors are dedicated to highly exploring the search domain, whereas the foraging and evading predators behaviors provide exploitation during the optimization process. In addition, ALA incorporates an energy-decreasing mechanism that enables dynamic adjustments to the balance between exploration and exploitation, thereby enhancing its ability to evade local optima and converge to global solutions more robustly. To thoroughly verify the effectiveness of the proposed method, ALA is compared with 17 other state-of-the-art meta-heuristic algorithms on the IEEE CEC2017 benchmark test suite and the IEEE CEC2022 benchmark test suite. The experimental results indicate that ALA has reliable comprehensive optimization performance and can achieve superior solution accuracy, convergence speed, and stability in most test cases. For the 29 10-, 30-, 50-, and 100-dimensional CEC2017 functions, ALA obtains the lowest Friedman average ranking values among all competitor methods, which are 1.7241, 2.1034, 2.7241, and 2.9310, respectively, and for the 12 CEC2022 functions, ALA again wins the optimal Friedman average ranking of 2.1667. Finally, to further evaluate its applicability, ALA is implemented to address a series of optimization cases, including constrained engineering design, photovoltaic (PV) model parameter identification, and fractional-order proportional-differential-integral (FOPID) controller gain tuning. Our findings highlight the competitive edge and potential of ALA for real-world engineering applications. The source code of ALA is publicly available at https://github.com/StevenShaw98/Artificial-Lemming-Algorithm.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11023-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11023-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of the intelligent information era has witnessed a proliferation of complex optimization problems across various disciplines. Although existing meta-heuristic algorithms have demonstrated efficacy in many scenarios, they still struggle with certain challenges such as premature convergence, insufficient exploration, and lack of robustness in high-dimensional, nonconvex search spaces. These limitations underscore the need for novel optimization techniques that can better balance exploration and exploitation while maintaining computational efficiency. In response to this need, we propose the Artificial Lemming Algorithm (ALA), a bio-inspired metaheuristic that mathematically models four distinct behaviors of lemmings in nature: long-distance migration, digging holes, foraging, and evading predators. Specifically, the long-distance migration and burrow digging behaviors are dedicated to highly exploring the search domain, whereas the foraging and evading predators behaviors provide exploitation during the optimization process. In addition, ALA incorporates an energy-decreasing mechanism that enables dynamic adjustments to the balance between exploration and exploitation, thereby enhancing its ability to evade local optima and converge to global solutions more robustly. To thoroughly verify the effectiveness of the proposed method, ALA is compared with 17 other state-of-the-art meta-heuristic algorithms on the IEEE CEC2017 benchmark test suite and the IEEE CEC2022 benchmark test suite. The experimental results indicate that ALA has reliable comprehensive optimization performance and can achieve superior solution accuracy, convergence speed, and stability in most test cases. For the 29 10-, 30-, 50-, and 100-dimensional CEC2017 functions, ALA obtains the lowest Friedman average ranking values among all competitor methods, which are 1.7241, 2.1034, 2.7241, and 2.9310, respectively, and for the 12 CEC2022 functions, ALA again wins the optimal Friedman average ranking of 2.1667. Finally, to further evaluate its applicability, ALA is implemented to address a series of optimization cases, including constrained engineering design, photovoltaic (PV) model parameter identification, and fractional-order proportional-differential-integral (FOPID) controller gain tuning. Our findings highlight the competitive edge and potential of ALA for real-world engineering applications. The source code of ALA is publicly available at https://github.com/StevenShaw98/Artificial-Lemming-Algorithm.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.