Application of deep learning for high-throughput phenotyping of seed: a review

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chen Jin, Lei Zhou, Yuanyuan Pu, Chu Zhang, Hengnian Qi, Yiying Zhao
{"title":"Application of deep learning for high-throughput phenotyping of seed: a review","authors":"Chen Jin,&nbsp;Lei Zhou,&nbsp;Yuanyuan Pu,&nbsp;Chu Zhang,&nbsp;Hengnian Qi,&nbsp;Yiying Zhao","doi":"10.1007/s10462-024-11079-5","DOIUrl":null,"url":null,"abstract":"<div><p>Seed quality is of great importance for agricultural cultivation. High-throughput phenotyping techniques can collect magnificent seed information in a rapid and non-destructive manner. Emerging deep learning technology brings new opportunities for effectively processing massive and diverse data from seeds and evaluating their quality. This article comprehensively reviews the principle of several high-throughput phenotyping techniques for non-destructively collection of seed information. In addition, recent research studies on the application of deep learning-based approaches for seed quality inspection are reviewed and summarized, including variety classification and grading, seed damage detection, components prediction, seed cleanliness, vitality assessment, etc. This review illustrates that the combination of deep learning and high-throughput phenotyping techniques can be a promising tool for collection of various phenotype information of seeds, which can be used for effective evaluation of seed quality in industrial practical applications, such as seed breeding, seed quality inspection and management, and seed selection as a food source.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 3","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11079-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11079-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Seed quality is of great importance for agricultural cultivation. High-throughput phenotyping techniques can collect magnificent seed information in a rapid and non-destructive manner. Emerging deep learning technology brings new opportunities for effectively processing massive and diverse data from seeds and evaluating their quality. This article comprehensively reviews the principle of several high-throughput phenotyping techniques for non-destructively collection of seed information. In addition, recent research studies on the application of deep learning-based approaches for seed quality inspection are reviewed and summarized, including variety classification and grading, seed damage detection, components prediction, seed cleanliness, vitality assessment, etc. This review illustrates that the combination of deep learning and high-throughput phenotyping techniques can be a promising tool for collection of various phenotype information of seeds, which can be used for effective evaluation of seed quality in industrial practical applications, such as seed breeding, seed quality inspection and management, and seed selection as a food source.

深度学习在种子高通量表型分析中的应用综述
种子质量对农业生产至关重要。高通量表型技术可以快速、无损地收集大量种子信息。新兴的深度学习技术为有效处理种子中大量多样的数据并评估其质量带来了新的机会。本文全面综述了几种用于无损收集种子信息的高通量表型技术的原理。此外,综述了近年来基于深度学习方法在种子质量检测中的应用研究,包括品种分类分级、种子损伤检测、成分预测、种子清洁度、活力评估等。研究表明,将深度学习与高通量表型技术相结合,可以有效地收集种子的各种表型信息,在种子育种、种子质量检测与管理、种子作为食物来源的选择等工业实际应用中进行有效的种子质量评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信