Impact of Mg-Doped AlGaN Electron Blocking Layer on Micro-LEDs: A Comparative Analysis of Carrier Transport Versus Chip Size and Current Density

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ying Jiang;Zhuoying Jiang;Mengyue Mo;Kai Huang;Zhaoxia Bi;Cheng Li;Jinchai Li;Junyong Kang;Rong Zhang
{"title":"Impact of Mg-Doped AlGaN Electron Blocking Layer on Micro-LEDs: A Comparative Analysis of Carrier Transport Versus Chip Size and Current Density","authors":"Ying Jiang;Zhuoying Jiang;Mengyue Mo;Kai Huang;Zhaoxia Bi;Cheng Li;Jinchai Li;Junyong Kang;Rong Zhang","doi":"10.1109/TED.2024.3509822","DOIUrl":null,"url":null,"abstract":"Micro-light emitting diode (micro-LED) is an essential component for the next-generation self-emissive display. However, existing studies often focus on specific parameters, such as chip size and current density, which restricts the overall understanding of micro-LEDs. This study presents a novel and extensive numerical analysis evaluating the impact of Mg-doped AlGaN electron blocking layers (EBLs) on InGaN-based micro-LED performance, covering current densities from 0.1 to 1000 A/cm2 and mesa sizes from 3 to \n<inline-formula> <tex-math>$100~\\mu $ </tex-math></inline-formula>\nm for micro-LEDs to \n<inline-formula> <tex-math>$\\gt 200~\\mu $ </tex-math></inline-formula>\nm for conventional LEDs. Unlike prior studies, our work uniquely investigates the interplay between EBL doping concentrations and micro-LED performance across multiple dimensions, providing new insights into carrier injection mechanisms. By varying the EBL doping levels (\n<inline-formula> <tex-math>$1\\times 10^{{19}}$ </tex-math></inline-formula>\n cm−3, \n<inline-formula> <tex-math>$3\\times 10^{{18}}$ </tex-math></inline-formula>\n cm−3, and without EBL), we explored their impact on the band alignment at the last quantum barrier (LQB) and EBL interface, which is crucial for modulating carrier injections and increasing light output power density (LOPD). The results indicate that optimizing EBL properties improves electron blocking at low current densities and enhances hole injection at higher densities, effectively reducing the current leakage and enhancing the luminous efficiency of micro-LEDs across a broad range of current densities. This comprehensive analysis challenges conventional micro-LED design approaches by emphasizing the importance of EBL engineering to achieve balanced and efficient carrier injections under a variety of operating conditions, providing a pathway for future innovations in micro-LED technology.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"306-311"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10786373/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-light emitting diode (micro-LED) is an essential component for the next-generation self-emissive display. However, existing studies often focus on specific parameters, such as chip size and current density, which restricts the overall understanding of micro-LEDs. This study presents a novel and extensive numerical analysis evaluating the impact of Mg-doped AlGaN electron blocking layers (EBLs) on InGaN-based micro-LED performance, covering current densities from 0.1 to 1000 A/cm2 and mesa sizes from 3 to $100~\mu $ m for micro-LEDs to $\gt 200~\mu $ m for conventional LEDs. Unlike prior studies, our work uniquely investigates the interplay between EBL doping concentrations and micro-LED performance across multiple dimensions, providing new insights into carrier injection mechanisms. By varying the EBL doping levels ( $1\times 10^{{19}}$ cm−3, $3\times 10^{{18}}$ cm−3, and without EBL), we explored their impact on the band alignment at the last quantum barrier (LQB) and EBL interface, which is crucial for modulating carrier injections and increasing light output power density (LOPD). The results indicate that optimizing EBL properties improves electron blocking at low current densities and enhances hole injection at higher densities, effectively reducing the current leakage and enhancing the luminous efficiency of micro-LEDs across a broad range of current densities. This comprehensive analysis challenges conventional micro-LED design approaches by emphasizing the importance of EBL engineering to achieve balanced and efficient carrier injections under a variety of operating conditions, providing a pathway for future innovations in micro-LED technology.
掺杂mg的AlGaN电子阻挡层对微型led的影响:载流子输运与芯片尺寸和电流密度的比较分析
微发光二极管(micro-LED)是下一代自发光显示器的重要组成部分。然而,现有的研究往往集中在特定的参数上,如芯片尺寸和电流密度,这限制了对微型led的整体理解。本研究提出了一种新颖而广泛的数值分析,评估了mg掺杂AlGaN电子阻挡层(EBLs)对基于ingan的微型led性能的影响,涵盖了电流密度从0.1到1000 a /cm2,平台尺寸从微型led的3到100~ $100~ $ 200~ $ 200 μ $ m。与之前的研究不同,我们的工作从多个维度独特地研究了EBL掺杂浓度与微型led性能之间的相互作用,为载流子注入机制提供了新的见解。通过改变EBL掺杂水平($1\乘以10^{{19}}$ cm−3,$3\乘以10^{{18}}$ cm−3,并且不掺杂EBL),我们探索了它们对最后量子势垒(LQB)和EBL界面的能带对准的影响,这对于调制载流子注入和光输出功率密度(LOPD)至关重要。结果表明,优化EBL性能可以改善低电流密度下的电子阻挡,提高高电流密度下的空穴注入,有效减少电流泄漏,提高微led在大电流密度下的发光效率。通过强调EBL工程在各种工作条件下实现平衡和高效载流子注入的重要性,该综合分析挑战了传统的微型led设计方法,为微型led技术的未来创新提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信