Artificial intelligence-driven phase stability evaluation and new dopants identification of hafnium oxide-based ferroelectric materials

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shaoan Yan, Pei Xu, Gang Li, Yuchun Li, Yingfang Zhu, Xiaona Zhu, Qiong Yang, Meng Li, Minghua Tang, Hongliang Lu, Sen Liu, Qingjiang Li, David Wei Zhang, Zhigang Chen
{"title":"Artificial intelligence-driven phase stability evaluation and new dopants identification of hafnium oxide-based ferroelectric materials","authors":"Shaoan Yan, Pei Xu, Gang Li, Yuchun Li, Yingfang Zhu, Xiaona Zhu, Qiong Yang, Meng Li, Minghua Tang, Hongliang Lu, Sen Liu, Qingjiang Li, David Wei Zhang, Zhigang Chen","doi":"10.1038/s41524-024-01510-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, a multi-stage material design framework combining machine learning techniques with density functional theory is established to reveal the mechanism of phase stabilization in HfO<sub>2</sub> based ferroelectric materials. The ferroelectric phase fractions based on a more stringent relationship of phase energy differences is proposed as an evaluation criterion for the ferroelectric performance of hafnium-based materials. Based on the Boltzmann distribution theory, the abstract phase energy difference is converted into an intuitive phase fraction distribution mapping. A large-scale prediction of unknown dopants is conducted within the material design framework, and gallium (Ga) is identified as a new dopant for HfO<sub>2</sub>. Both experiments and density functional theory calculations demonstrate that Ga is an excellent dopant for ferroelectric hafnium oxide, especially, the experimentally determined variation trends of ferroelectric phase fraction and polarization properties with Ga doping concentration are in good agreement with the predictions given by machine learning. This work provides a new perspective from machine learning to deepen the understanding of the ferroelectric properties of HfO<sub>2</sub> materials, offering fresh insights into the design and performance prediction of HfO<sub>2</sub> ferroelectric thin films.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"2 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01510-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a multi-stage material design framework combining machine learning techniques with density functional theory is established to reveal the mechanism of phase stabilization in HfO2 based ferroelectric materials. The ferroelectric phase fractions based on a more stringent relationship of phase energy differences is proposed as an evaluation criterion for the ferroelectric performance of hafnium-based materials. Based on the Boltzmann distribution theory, the abstract phase energy difference is converted into an intuitive phase fraction distribution mapping. A large-scale prediction of unknown dopants is conducted within the material design framework, and gallium (Ga) is identified as a new dopant for HfO2. Both experiments and density functional theory calculations demonstrate that Ga is an excellent dopant for ferroelectric hafnium oxide, especially, the experimentally determined variation trends of ferroelectric phase fraction and polarization properties with Ga doping concentration are in good agreement with the predictions given by machine learning. This work provides a new perspective from machine learning to deepen the understanding of the ferroelectric properties of HfO2 materials, offering fresh insights into the design and performance prediction of HfO2 ferroelectric thin films.

Abstract Image

人工智能驱动的氧化铪基铁电材料相稳定性评价及新掺杂剂鉴定
本文建立了结合机器学习技术和密度泛函理论的多阶段材料设计框架,揭示了HfO2基铁电材料的相稳定机理。提出了基于更严格的相能差关系的铁电相分数作为评价铪基材料铁电性能的标准。基于玻尔兹曼分布理论,将抽象的相位差转换为直观的相分数分布图。在材料设计框架内对未知掺杂剂进行了大规模预测,确定了镓(Ga)为HfO2的新掺杂剂。实验和密度泛函理论计算均表明,Ga是一种优良的铁电氧化铪掺杂剂,特别是实验测定的铁电相分数和极化性能随Ga掺杂浓度的变化趋势与机器学习预测的结果吻合较好。本研究为深化对HfO2材料铁电性质的认识提供了一个新的机器学习视角,为HfO2铁电薄膜的设计和性能预测提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信