Mechanism analysis for the differences in multi-level structure, enzyme accessibility and pasting properties of starch granules caused by different hydrolysis pathways of maltogenic α-amylase

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Bo Zhang, Yuxiang Bai, Xiaoxiao Li, Jingjing Dong, Yanli Wang, Zhengyu Jin
{"title":"Mechanism analysis for the differences in multi-level structure, enzyme accessibility and pasting properties of starch granules caused by different hydrolysis pathways of maltogenic α-amylase","authors":"Bo Zhang, Yuxiang Bai, Xiaoxiao Li, Jingjing Dong, Yanli Wang, Zhengyu Jin","doi":"10.1016/j.foodchem.2025.142789","DOIUrl":null,"url":null,"abstract":"The effect of pores distribution on the multi-scale structure, enzyme accessibility, and pasting properties of the waxy maize starch granules with the same degree of hydrolysis were examined. Increased maltogenic α-amylase (MA) dosage obviously increased the shallow pores number and the roughness, whereas extended time increased the holes depth. Despite achieving the same hydrolysis degree and specific surface area, samples with numerous shallow holes exhibited a higher mass fractal dimension, a lower, peak viscosity, final viscosity and setback. Besides, increased dosage prompted a sustained decrease in the number of short chains with DP 10–17; whereas prolonging time encouraged the continuous catalyzation in the same chains. Enzymatic probe profiles showed MA was more accessible to the amorphous region on the periphery of starch granules, rather than the inside. This finding provides a more valuable understanding of the catalytic mechanism for MA in heterogeneous systems and an accurate guidance for the industrial production.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"18 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.142789","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of pores distribution on the multi-scale structure, enzyme accessibility, and pasting properties of the waxy maize starch granules with the same degree of hydrolysis were examined. Increased maltogenic α-amylase (MA) dosage obviously increased the shallow pores number and the roughness, whereas extended time increased the holes depth. Despite achieving the same hydrolysis degree and specific surface area, samples with numerous shallow holes exhibited a higher mass fractal dimension, a lower, peak viscosity, final viscosity and setback. Besides, increased dosage prompted a sustained decrease in the number of short chains with DP 10–17; whereas prolonging time encouraged the continuous catalyzation in the same chains. Enzymatic probe profiles showed MA was more accessible to the amorphous region on the periphery of starch granules, rather than the inside. This finding provides a more valuable understanding of the catalytic mechanism for MA in heterogeneous systems and an accurate guidance for the industrial production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信