Cross-scale covariance for material property prediction

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Benjamin A. Jasperson, Ilia Nikiforov, Amit Samanta, Fei Zhou, Ellad B. Tadmor, Vincenzo Lordi, Vasily V. Bulatov
{"title":"Cross-scale covariance for material property prediction","authors":"Benjamin A. Jasperson, Ilia Nikiforov, Amit Samanta, Fei Zhou, Ellad B. Tadmor, Vincenzo Lordi, Vasily V. Bulatov","doi":"10.1038/s41524-024-01453-w","DOIUrl":null,"url":null,"abstract":"<p>A simulation can stand its ground against an experiment only if its prediction uncertainty is known. The unknown accuracy of interatomic potentials (IPs) is a major source of prediction uncertainty, severely limiting the use of large-scale classical atomistic simulations in a wide range of scientific and engineering applications. Here we explore covariance between predictions of metal plasticity, from 178 large-scale (~10<sup>8</sup> atoms) molecular dynamics (MD) simulations, and a variety of indicator properties computed at small-scales (≤10<sup>2</sup> atoms). All simulations use the same 178 IPs. In a manner similar to statistical studies in public health, we analyze correlations of strength with indicators, identify the best predictor properties, and build a cross-scale “strength-on-predictors” regression model. This model is then used to estimate regression error over the statistical pool of IPs. Small-scale predictors found to be highly covariant with strength are computed using expensive quantum-accurate calculations and used to predict flow strength, within the statistical error bounds established in our study.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01453-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A simulation can stand its ground against an experiment only if its prediction uncertainty is known. The unknown accuracy of interatomic potentials (IPs) is a major source of prediction uncertainty, severely limiting the use of large-scale classical atomistic simulations in a wide range of scientific and engineering applications. Here we explore covariance between predictions of metal plasticity, from 178 large-scale (~108 atoms) molecular dynamics (MD) simulations, and a variety of indicator properties computed at small-scales (≤102 atoms). All simulations use the same 178 IPs. In a manner similar to statistical studies in public health, we analyze correlations of strength with indicators, identify the best predictor properties, and build a cross-scale “strength-on-predictors” regression model. This model is then used to estimate regression error over the statistical pool of IPs. Small-scale predictors found to be highly covariant with strength are computed using expensive quantum-accurate calculations and used to predict flow strength, within the statistical error bounds established in our study.

Abstract Image

材料性能预测的跨尺度协方差
只有在预测不确定性已知的情况下,模拟才能与实验相抗衡。原子间势(IPs)的未知精度是预测不确定性的主要来源,严重限制了大规模经典原子模拟在广泛科学和工程应用中的使用。在这里,我们探讨了来自178个大尺度(~108个原子)分子动力学(MD)模拟的金属塑性预测与在小尺度(≤102个原子)计算的各种指标性质之间的协方差。所有的模拟都使用相同的178个ip。以类似于公共卫生统计研究的方式,我们分析了强度与指标的相关性,确定了最佳预测因子属性,并建立了跨尺度的“强度-预测因子”回归模型。然后使用该模型估计ip统计池上的回归误差。小规模预测因子被发现与强度高度协变,使用昂贵的量子精确计算来计算,并在我们研究中建立的统计误差范围内用于预测流动强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信