Causal discovery and fault diagnosis based on mixed data types for system reliability modeling

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaokang Wang, Siqi Jiang, Xinghan Li, Mozhu Wang
{"title":"Causal discovery and fault diagnosis based on mixed data types for system reliability modeling","authors":"Xiaokang Wang, Siqi Jiang, Xinghan Li, Mozhu Wang","doi":"10.1007/s40747-024-01740-5","DOIUrl":null,"url":null,"abstract":"<p>Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euclidean data. In this paper, we address the issue by proposing a causal mapping process based on coordinate representations for heterogeneous non-Euclidean data. We propose a data generation mechanism between the parent nodes and the child nodes and create a causal mechanism based on multi-dimensional tensor regression. Furthermore, within the aforementioned theoretical framework, we propose a two-stage causal discovery approach based on regularized generalized canonical correlation analysis. Using the discrete representation in the shared projection direction, causal relationships between heterogeneous non-Euclidean variables can be discovered more accurately. Finally, empirical research is conducted on real-world industrial sensor data, which demonstrates the effectiveness of the proposed method for discovering causal relationships in heterogeneous non-Euclidean data.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"79 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01740-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euclidean data. In this paper, we address the issue by proposing a causal mapping process based on coordinate representations for heterogeneous non-Euclidean data. We propose a data generation mechanism between the parent nodes and the child nodes and create a causal mechanism based on multi-dimensional tensor regression. Furthermore, within the aforementioned theoretical framework, we propose a two-stage causal discovery approach based on regularized generalized canonical correlation analysis. Using the discrete representation in the shared projection direction, causal relationships between heterogeneous non-Euclidean variables can be discovered more accurately. Finally, empirical research is conducted on real-world industrial sensor data, which demonstrates the effectiveness of the proposed method for discovering causal relationships in heterogeneous non-Euclidean data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信