Adaptive Descriptor Sliding-Mode Observer-Based Dynamic Event-Triggered Consensus of Multiagent Systems Against Actuator and Sensor Faults

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhengyu Ye;Bin Jiang;Ziquan Yu;Yuehua Cheng
{"title":"Adaptive Descriptor Sliding-Mode Observer-Based Dynamic Event-Triggered Consensus of Multiagent Systems Against Actuator and Sensor Faults","authors":"Zhengyu Ye;Bin Jiang;Ziquan Yu;Yuehua Cheng","doi":"10.1109/TCYB.2024.3519593","DOIUrl":null,"url":null,"abstract":"Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form, enabling an observer to simultaneously achieve state estimation and fault diagnosis. Using the estimation results, an adaptive FTC algorithm is developed to maintain the stability of MASs in the presence of concurrent faults, with control gains updated based on the observer consensus error. A dynamic event-triggered mechanism is incorporated to manage data transmission and update neighboring agents’ information for the controller, thereby reducing communication overhead. Finally, a numerical simulation involving multiple quadrotors is conducted to validate the effectiveness of the proposed method.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"672-683"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820961/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form, enabling an observer to simultaneously achieve state estimation and fault diagnosis. Using the estimation results, an adaptive FTC algorithm is developed to maintain the stability of MASs in the presence of concurrent faults, with control gains updated based on the observer consensus error. A dynamic event-triggered mechanism is incorporated to manage data transmission and update neighboring agents’ information for the controller, thereby reducing communication overhead. Finally, a numerical simulation involving multiple quadrotors is conducted to validate the effectiveness of the proposed method.
基于自适应广义滑模观测器的多智能体系统在执行器和传感器故障情况下的动态事件触发一致性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信