Zezhen Liu, Jingtao Zhao, Danyang Shen, Lei Lei and Shiqing Xu
{"title":"Unveiling the mechanism behind shell thickness-dependent X-ray excited optical and persistent luminescence in lanthanide-doped core/shell nanoparticles†","authors":"Zezhen Liu, Jingtao Zhao, Danyang Shen, Lei Lei and Shiqing Xu","doi":"10.1039/D4TC04256E","DOIUrl":null,"url":null,"abstract":"<p >Lanthanide-doped fluoride nanoparticles (NPs) exhibit tunable X-ray excited optical luminescence (XEOL) and X-ray excited persistent luminescence (XEPL) properties, demonstrating promising applications in X-ray imaging. However, the mechanisms underlying shell thickness-dependent variations in XEOL and XEPL intensities remain unclear. In this work, we utilize homogeneous NaYF<small><sub>4</sub></small>:Tb@NaYF<small><sub>4</sub></small> and heterogeneous NaYF<small><sub>4</sub></small>:Tb@NaLuF<small><sub>4</sub></small> core/shell NPs to investigate the role of shell thickness. Our results reveal an optimal shell thickness of approximately 3 nm for both XEOL and XEPL, which contrasts with behaviors observed in upconversion systems. The shell layer effectively passivates NP surface defects, reducing energy migration from activators to these defects. However, it also absorbs input X-ray photons, which can diminish X-ray absorption in the core layer. Our findings contribute to the design of lanthanide-doped core/shell NPs with enhanced XEOL and XEPL performances.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 2","pages":" 649-654"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04256e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lanthanide-doped fluoride nanoparticles (NPs) exhibit tunable X-ray excited optical luminescence (XEOL) and X-ray excited persistent luminescence (XEPL) properties, demonstrating promising applications in X-ray imaging. However, the mechanisms underlying shell thickness-dependent variations in XEOL and XEPL intensities remain unclear. In this work, we utilize homogeneous NaYF4:Tb@NaYF4 and heterogeneous NaYF4:Tb@NaLuF4 core/shell NPs to investigate the role of shell thickness. Our results reveal an optimal shell thickness of approximately 3 nm for both XEOL and XEPL, which contrasts with behaviors observed in upconversion systems. The shell layer effectively passivates NP surface defects, reducing energy migration from activators to these defects. However, it also absorbs input X-ray photons, which can diminish X-ray absorption in the core layer. Our findings contribute to the design of lanthanide-doped core/shell NPs with enhanced XEOL and XEPL performances.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors