Jin Chen;Qiang Liu;Yuxin Liu;Zhiqiang Mu;Xing Wei;Wenjie Yu
{"title":"A Novel Approach to Integrating Thermal Performance and Total Ionizing Dose Hardening in Void-Embedded Silicon-on-Insulator MOSFET","authors":"Jin Chen;Qiang Liu;Yuxin Liu;Zhiqiang Mu;Xing Wei;Wenjie Yu","doi":"10.1109/TED.2024.3506504","DOIUrl":null,"url":null,"abstract":"The excellent tolerance against total ionizing dose (TID) effect and high compatibility with conventional technology nodes has been demonstrated in our previous work with void-embedded-silicon-on-insulator (VESOI) device. However, the presence of embedded void structures within the VESOI devices also introduces additional thermal performance challenges. To address this issue while maintaining the exceptional TID tolerance, we conducted a comprehensive study on the role played by embedded void in blocking both thermal conduction and radiation induced leakage path. Through both pulse I–V tests and systematic simulations, we have revealed the close relationship between the heat sinking capability of VESOI devices and the embedded voids with different structures and dimensions. By applying a nanoscale-embedded chamber extending into the middle channel of VESOI MOSFET, the increase of temperature in the channel is suppressed to a rather low level of 0.3 K. Furthermore, the nano void chamber is also found effective in cutting off radiation-induced leakage paths lying near the bottom channel, resulting in a reduction of the leakage current to \n<inline-formula> <tex-math>$10^{-{11}}~\\mu $ </tex-math></inline-formula>\nA/\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm. This study paves the way for developing more robust and efficient devices based on VESOI technology that can maintain better thermal performance along with TID robustness.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"51-56"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778609/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The excellent tolerance against total ionizing dose (TID) effect and high compatibility with conventional technology nodes has been demonstrated in our previous work with void-embedded-silicon-on-insulator (VESOI) device. However, the presence of embedded void structures within the VESOI devices also introduces additional thermal performance challenges. To address this issue while maintaining the exceptional TID tolerance, we conducted a comprehensive study on the role played by embedded void in blocking both thermal conduction and radiation induced leakage path. Through both pulse I–V tests and systematic simulations, we have revealed the close relationship between the heat sinking capability of VESOI devices and the embedded voids with different structures and dimensions. By applying a nanoscale-embedded chamber extending into the middle channel of VESOI MOSFET, the increase of temperature in the channel is suppressed to a rather low level of 0.3 K. Furthermore, the nano void chamber is also found effective in cutting off radiation-induced leakage paths lying near the bottom channel, resulting in a reduction of the leakage current to
$10^{-{11}}~\mu $
A/
$\mu $
m. This study paves the way for developing more robust and efficient devices based on VESOI technology that can maintain better thermal performance along with TID robustness.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.