Samantha L. Piper, Leena Melag, Mega Kar, Azra Sourjah, Xiong Xiao, Eric F. May, Kondo-Francois Aguey-Zinsou, Douglas R. MacFarlane, Jennifer M. Pringle
{"title":"Organic ionic plastic crystals having colossal barocaloric effects for sustainable refrigeration","authors":"Samantha L. Piper, Leena Melag, Mega Kar, Azra Sourjah, Xiong Xiao, Eric F. May, Kondo-Francois Aguey-Zinsou, Douglas R. MacFarlane, Jennifer M. Pringle","doi":"10.1126/science.adq8396","DOIUrl":null,"url":null,"abstract":"Barocaloric (BC) materials offer the potential for highly energy-efficient refrigeration by generating heat absorption through the effect of pressure on a solid-solid phase transition. However, very few of the known materials have the required phase transition in the temperature regions necessary for domestic refrigeration or air conditioning. We introduce organic ionic plastic crystals (OIPCs) as a new family of BC materials. OIPCs display subambient transition temperatures, so-called “colossal” entropy changes (92 to 240 joules per kilogram per kelvin), and a high sensitivity to pressure, up to 23.7 kelvin per kilobar. The BC responses achieved with these prototype OIPC-BCs are tunable through structural modification of the ions; this wide matrix of possible combinations of structure and function indicates the scope of OIPCs as a new class of material for efficient and sustainable cooling technologies.","PeriodicalId":21678,"journal":{"name":"Science","volume":"72 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adq8396","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Barocaloric (BC) materials offer the potential for highly energy-efficient refrigeration by generating heat absorption through the effect of pressure on a solid-solid phase transition. However, very few of the known materials have the required phase transition in the temperature regions necessary for domestic refrigeration or air conditioning. We introduce organic ionic plastic crystals (OIPCs) as a new family of BC materials. OIPCs display subambient transition temperatures, so-called “colossal” entropy changes (92 to 240 joules per kilogram per kelvin), and a high sensitivity to pressure, up to 23.7 kelvin per kilobar. The BC responses achieved with these prototype OIPC-BCs are tunable through structural modification of the ions; this wide matrix of possible combinations of structure and function indicates the scope of OIPCs as a new class of material for efficient and sustainable cooling technologies.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.