Integrated transcriptomic and proteomic analyses provide insights into the biosynthesis of Lycii fructus polysaccharides from different cultivation regions

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY
Limei Tong , Yinxiu Jiang , Xinrun Zhang , Xia Zhang , Yihao Zheng , Qiheng Zhao , Sheng Yu , Wenhua Zhang , Gang Ren , Zhanping Chen , Yuling Zhao , Sheng Guo , Hui Yan , Shulan Su , Yang Pan , Jin-ao Duan , Fang Zhang
{"title":"Integrated transcriptomic and proteomic analyses provide insights into the biosynthesis of Lycii fructus polysaccharides from different cultivation regions","authors":"Limei Tong ,&nbsp;Yinxiu Jiang ,&nbsp;Xinrun Zhang ,&nbsp;Xia Zhang ,&nbsp;Yihao Zheng ,&nbsp;Qiheng Zhao ,&nbsp;Sheng Yu ,&nbsp;Wenhua Zhang ,&nbsp;Gang Ren ,&nbsp;Zhanping Chen ,&nbsp;Yuling Zhao ,&nbsp;Sheng Guo ,&nbsp;Hui Yan ,&nbsp;Shulan Su ,&nbsp;Yang Pan ,&nbsp;Jin-ao Duan ,&nbsp;Fang Zhang","doi":"10.1016/j.fochms.2024.100232","DOIUrl":null,"url":null,"abstract":"<div><div>Polysaccharides from L. fructus (LFPs) serve as important active biomacromolecules for the wide spectrum of bioactivities exhibited by Lycii fructus. However, the influence of ecological environments on the biosynthesis and structural characteristics of LFPs remains largely unexplored. The present research conducted a comprehensive strategy combining physicochemical structural elucidation, stoichiometric analysis, transcriptomic profiling, and proteomic analysis in L. fructus samples collected from typical cultivation regions including Ningxia, Xinjiang, and Qinghai. The results revealed distinct structural variations in LFPs from Ningxia compared to those from other regions in terms of Glc, Ara, GalA composition percentages as well as overall content. The omics data identified 5531 and 8084 differentially expressed genes (DEGs), as well as 3728 and 4732 differentially expressed proteins (DEPs) in Xinjiang and Qinghai compared to Ningxia, respectively. The integration of transcriptomic and proteomic analyses revealed enrichment of DEGs and DEPs involved in the biosynthesis pathway of LFPs, including UDPs, AXS, and UGDH. Temperature and precipitation were the significant ecological factors affecting LFPs biosynthesis. These comprehensive analyses provide a novel perspective for explaining the important material basis and environmental response mechanism underlying the quality formation of L. fructus.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100232"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266656622400039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polysaccharides from L. fructus (LFPs) serve as important active biomacromolecules for the wide spectrum of bioactivities exhibited by Lycii fructus. However, the influence of ecological environments on the biosynthesis and structural characteristics of LFPs remains largely unexplored. The present research conducted a comprehensive strategy combining physicochemical structural elucidation, stoichiometric analysis, transcriptomic profiling, and proteomic analysis in L. fructus samples collected from typical cultivation regions including Ningxia, Xinjiang, and Qinghai. The results revealed distinct structural variations in LFPs from Ningxia compared to those from other regions in terms of Glc, Ara, GalA composition percentages as well as overall content. The omics data identified 5531 and 8084 differentially expressed genes (DEGs), as well as 3728 and 4732 differentially expressed proteins (DEPs) in Xinjiang and Qinghai compared to Ningxia, respectively. The integration of transcriptomic and proteomic analyses revealed enrichment of DEGs and DEPs involved in the biosynthesis pathway of LFPs, including UDPs, AXS, and UGDH. Temperature and precipitation were the significant ecological factors affecting LFPs biosynthesis. These comprehensive analyses provide a novel perspective for explaining the important material basis and environmental response mechanism underlying the quality formation of L. fructus.

Abstract Image

综合转录组学和蛋白质组学分析提供了对不同栽培地区枸杞多糖生物合成的见解。
枸杞子多糖(LFPs)是枸杞子具有广泛生物活性的重要生物大分子。然而,生态环境对lfp生物合成和结构特性的影响在很大程度上仍未被探索。本研究对宁夏、新疆、青海等典型栽培地区的枸杞子进行了理化结构解析、化学计量学分析、转录组学分析和蛋白质组学分析等综合研究。结果表明,与其他地区相比,宁夏lfp在Glc、Ara、GalA组成百分比和总体含量方面存在明显的结构差异。组学数据显示,新疆和青海与宁夏相比,分别鉴定出5531个和8084个差异表达基因(deg),以及3728个和4732个差异表达蛋白(dep)。转录组学和蛋白质组学的综合分析显示,参与LFPs生物合成途径的DEGs和DEPs富集,包括UDPs、AXS和UGDH。温度和降水是影响lfp生物合成的重要生态因子。这些综合分析为解释枸杞品质形成的重要物质基础和环境响应机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍: Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry. Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods. The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries. Topics include: Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism Quality, safety, authenticity and traceability of foods and packaging materials Valorisation of food waste arising from processing and exploitation of by-products Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信