Ultrafast Switching of Ferroelectric HfO2-ZrO2 Under Low Voltage With Layered Structure

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yifan Song;Jiajie Yu;Zhuming Wang;Kangli Xu;Yongkai Liu;Chen Wang;Kun Chen;Qingqing Sun;David Wei Zhang;Lin Chen
{"title":"Ultrafast Switching of Ferroelectric HfO2-ZrO2 Under Low Voltage With Layered Structure","authors":"Yifan Song;Jiajie Yu;Zhuming Wang;Kangli Xu;Yongkai Liu;Chen Wang;Kun Chen;Qingqing Sun;David Wei Zhang;Lin Chen","doi":"10.1109/LED.2024.3487169","DOIUrl":null,"url":null,"abstract":"Ferroelectric (FE) Hf\n<inline-formula> <tex-math>$_{\\text {1-x}}$ </tex-math></inline-formula>\nZrxO2 (HZO) thin films have attracted considerable interest for their potential application in Ferroelectric Random-Access Memory (FeRAM) and Ferroelectric Field-Effect Transistors (FeFET), owing to their high dielectric constant, stability, and compatibility with CMOS processes. However, enhancing the polarization switching speed of HZO thin films remains a significant challenge. In this study, we successfully reduced the coercive field and improved the switching speed of HZO devices by integrating ferroelectric and antiferroelectric layers. We employed a high-speed pulsed measurement system with sub-nanosecond resolution to evaluate the switching speed of these devices. An ultrafast switching time of 780 ps at 2V was achieved, as supported by the nucleation-limited switching model. This work demonstrates a promising strategy for enhancing the switching speed in HZO films through structural engineering, offering valuable insights for practical device applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"12-15"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737232/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric (FE) Hf $_{\text {1-x}}$ ZrxO2 (HZO) thin films have attracted considerable interest for their potential application in Ferroelectric Random-Access Memory (FeRAM) and Ferroelectric Field-Effect Transistors (FeFET), owing to their high dielectric constant, stability, and compatibility with CMOS processes. However, enhancing the polarization switching speed of HZO thin films remains a significant challenge. In this study, we successfully reduced the coercive field and improved the switching speed of HZO devices by integrating ferroelectric and antiferroelectric layers. We employed a high-speed pulsed measurement system with sub-nanosecond resolution to evaluate the switching speed of these devices. An ultrafast switching time of 780 ps at 2V was achieved, as supported by the nucleation-limited switching model. This work demonstrates a promising strategy for enhancing the switching speed in HZO films through structural engineering, offering valuable insights for practical device applications.
低电压层状结构下铁电HfO2-ZrO2的超快开关
铁电(FE) Hf $_{\text {1-x}}$ ZrxO2 (HZO)薄膜由于其高介电常数、稳定性和与CMOS工艺的兼容性,在铁电随机存取存储器(FeRAM)和铁电场效应晶体管(FeFET)中的潜在应用引起了人们的极大兴趣。然而,提高HZO薄膜的极化开关速度仍然是一个重大的挑战。在本研究中,我们成功地通过整合铁电层和反铁电层来减小矫顽场并提高HZO器件的开关速度。我们采用亚纳秒分辨率的高速脉冲测量系统来评估这些器件的开关速度。在2V下实现了780 ps的超快开关时间,并得到了核限制开关模型的支持。这项工作展示了一种通过结构工程提高HZO薄膜开关速度的有前途的策略,为实际器件应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信