{"title":"Low Contact Resistivity of <10 Ω·mm for Au-Free Ohmic Contact on p-GaN/AlGaN/GaN","authors":"ChuYing Tang;ChengKai Deng;Chun Fu;Jiaqi He;Fangzhou Du;Peiran Wang;Kangyao Wen;Yi Zhang;Yang Jiang;Nick Tao;Wenyue Yu;Qing Wang;HongYu Yu","doi":"10.1109/LED.2024.3497584","DOIUrl":null,"url":null,"abstract":"A robust Au-free p-type ohmic contact process with ultralow contact resistivity is developed on p-GaN/AlGaN/GaN, which demonstrates the potential of GaN CMOS to be compatible with Si CMOS process lines. A novel metal stack of Mg/Ni/Pt is designed, and ultralow contact resistivity of \n<inline-formula> <tex-math>$8 \\; \\Omega \\cdot $ </tex-math></inline-formula>\nmm (\n<inline-formula> <tex-math>${1}.{0} \\times {10}^{-{5}} \\; \\Omega \\cdot $ </tex-math></inline-formula>\ncm\n<inline-formula> <tex-math>$^{{2}}\\text {)}$ </tex-math></inline-formula>\n is achieved. It is revealed that the Ga vacancies on the p-GaN surface induced by Ni, and the Ni2O3 embed in the decomposed p-GaN are key to forming stable low resistivity ohmic contact.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"24-27"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752539/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A robust Au-free p-type ohmic contact process with ultralow contact resistivity is developed on p-GaN/AlGaN/GaN, which demonstrates the potential of GaN CMOS to be compatible with Si CMOS process lines. A novel metal stack of Mg/Ni/Pt is designed, and ultralow contact resistivity of
$8 \; \Omega \cdot $
mm (
${1}.{0} \times {10}^{-{5}} \; \Omega \cdot $
cm
$^{{2}}\text {)}$
is achieved. It is revealed that the Ga vacancies on the p-GaN surface induced by Ni, and the Ni2O3 embed in the decomposed p-GaN are key to forming stable low resistivity ohmic contact.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.