Highly Robust p-GaN Gate HEMT With Surge-Energy Ruggedness Under Unclamped Inductive Switching and UV Pulse Laser Irradiation

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Feng Zhou;Tianyang Zhou;Can Zou;Rong Yu;Junfan Qian;Weizong Xu;Fangfang Ren;Dong Zhou;Dunjun Chen;Youdou Zheng;Rong Zhang;Hai Lu
{"title":"Highly Robust p-GaN Gate HEMT With Surge-Energy Ruggedness Under Unclamped Inductive Switching and UV Pulse Laser Irradiation","authors":"Feng Zhou;Tianyang Zhou;Can Zou;Rong Yu;Junfan Qian;Weizong Xu;Fangfang Ren;Dong Zhou;Dunjun Chen;Youdou Zheng;Rong Zhang;Hai Lu","doi":"10.1109/LED.2024.3501073","DOIUrl":null,"url":null,"abstract":"The robustness of non-avalanche p-GaN gate HEMTs against dynamic overvoltage (\n<inline-formula> <tex-math>${V}_{\\text {over.}}\\text {)}$ </tex-math></inline-formula>\n and transient surge-energy (\n<inline-formula> <tex-math>${E}_{\\text {sur.}}\\text {)}$ </tex-math></inline-formula>\n shocks is critical for device applications, especially for high-power switching applications. In this work, by carefully constructing an energy dissipating passage from the drain to the source, the proposed device successfully possesses the ability to withstand dynamic overvoltage and safely dissipate surge energy, achieving a maximum \n<inline-formula> <tex-math>${V}_{\\text {over.}}$ </tex-math></inline-formula>\n of 1.85 kV and an \n<inline-formula> <tex-math>${E}_{\\text {sur.}}$ </tex-math></inline-formula>\n of 11.7 J/cm2, setting a performance record for GaN-based devices. Furthermore, the device sustains over 1-million times repeated UIS energy shocks, revealing strong robustness. In particular, under extreme conditions of UV pulse laser irradiation and inductive transient, the device still exhibits notable survivability. These results reveal the great potential of non-avalanche p-GaN HEMTs with surge energy dissipating and overvoltage sustaining capabilities for high-power switching applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"36-39"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755067/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The robustness of non-avalanche p-GaN gate HEMTs against dynamic overvoltage ( ${V}_{\text {over.}}\text {)}$ and transient surge-energy ( ${E}_{\text {sur.}}\text {)}$ shocks is critical for device applications, especially for high-power switching applications. In this work, by carefully constructing an energy dissipating passage from the drain to the source, the proposed device successfully possesses the ability to withstand dynamic overvoltage and safely dissipate surge energy, achieving a maximum ${V}_{\text {over.}}$ of 1.85 kV and an ${E}_{\text {sur.}}$ of 11.7 J/cm2, setting a performance record for GaN-based devices. Furthermore, the device sustains over 1-million times repeated UIS energy shocks, revealing strong robustness. In particular, under extreme conditions of UV pulse laser irradiation and inductive transient, the device still exhibits notable survivability. These results reveal the great potential of non-avalanche p-GaN HEMTs with surge energy dissipating and overvoltage sustaining capabilities for high-power switching applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信