Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao
{"title":"Buried Interface Bilayer Engineering Toward High Efficiency and Stable Perovskite Modules","authors":"Long Zhou;Xinyuan Feng;Jiaojiao Zhang;Xinxin Li;Yuanbo Du;Dazheng Chen;Weidong Zhu;He Xi;Jincheng Zhang;Chunfu Zhang;Yue Hao","doi":"10.1109/LED.2024.3505233","DOIUrl":null,"url":null,"abstract":"The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"88-91"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10767209/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The inferior buried film crystallinity and interface recombination have severely limited the development of large-area perovskite modules. Buried interface engineering and energy alignment engineering are critical to achieving high efficiency and stable perovskite modules. Herein, we present a hole transport bilayer to improve the buried perovskite film contact and large-area perovskite film uniformity. The self-assembled monolayer (SAM) layer of Me-4PACz was introduced to modify the surface of PTAA, resulting in the improved buried film contact and better energy alignment. The hole transport bilayers exhibit hole-extraction capacity and high conductance. As a result, the blade-coated state-of-the-art cells realize an impressive efficiency of 23.52% and a high efficiency of 20.18% for inverted perovskite modules with an aperture area of 65 cm2. Moreover, the improved buried film and suppressed interface non-radiative recombination are beneficial to enhance the film and device stability. Our works provide an effective strategy to promote the manufacturing application of the large-area perovskite modules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信