Compact On-Chip Cul-De-Sac Mixed Topology Bandpass Filter With Extracted-Pole Unit Using TGV Technology

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bukun Xu;Yazi Cao;Shichang Chen;Bo Yuan;Gaofeng Wang
{"title":"Compact On-Chip Cul-De-Sac Mixed Topology Bandpass Filter With Extracted-Pole Unit Using TGV Technology","authors":"Bukun Xu;Yazi Cao;Shichang Chen;Bo Yuan;Gaofeng Wang","doi":"10.1109/LED.2024.3496444","DOIUrl":null,"url":null,"abstract":"A compact on-chip mixed topology bandpass filter (BPF) is proposed. By virtue of a new cul-de-sac structure, this BPF realizes transmission zeros (TZs) in pairs at both high and low frequency ends simultaneously. An extracted-pole unit, which can generate two additional TZs outside the passband of the BPF, is also employed. The presence of multiple TZs can greatly improve the outband rejection performance. The proposed topology is realized using laser-induced wet etching through glass via (TGV) technology, which has merits of high precision, ease integration, and process simplification. In particular, the proposed topology can effectively reduce the filter area by 24%. The use of Metal-Insulator-Metal (MIM) capacitors and spiral inductors further reduces its size. A fabricated prototype shows the minimum in-band insertion loss is 2.49 dB and the 3-dB fractional bandwidth is 25.3%. The BPF size is 1.6 mm \n<inline-formula> <tex-math>$\\times 0.8$ </tex-math></inline-formula>\n mm \n<inline-formula> <tex-math>$\\times 0.35$ </tex-math></inline-formula>\n mm, which is only about \n<inline-formula> <tex-math>$0.0131~\\lambda _{{0}} \\times 0.0065~\\lambda _{{0}}$ </tex-math></inline-formula>\n at \n<inline-formula> <tex-math>${f}_{{0}} =2.45$ </tex-math></inline-formula>\n GHz.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"8-11"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750877/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A compact on-chip mixed topology bandpass filter (BPF) is proposed. By virtue of a new cul-de-sac structure, this BPF realizes transmission zeros (TZs) in pairs at both high and low frequency ends simultaneously. An extracted-pole unit, which can generate two additional TZs outside the passband of the BPF, is also employed. The presence of multiple TZs can greatly improve the outband rejection performance. The proposed topology is realized using laser-induced wet etching through glass via (TGV) technology, which has merits of high precision, ease integration, and process simplification. In particular, the proposed topology can effectively reduce the filter area by 24%. The use of Metal-Insulator-Metal (MIM) capacitors and spiral inductors further reduces its size. A fabricated prototype shows the minimum in-band insertion loss is 2.49 dB and the 3-dB fractional bandwidth is 25.3%. The BPF size is 1.6 mm $\times 0.8$ mm $\times 0.35$ mm, which is only about $0.0131~\lambda _{{0}} \times 0.0065~\lambda _{{0}}$ at ${f}_{{0}} =2.45$ GHz.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信